-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_lorenz_gan.py
293 lines (261 loc) · 14.8 KB
/
train_lorenz_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
from lorenz_gan.lorenz import run_lorenz96_truth, process_lorenz_data, save_lorenz_output
from lorenz_gan.gan import generator_conv, generator_dense, discriminator_conv, discriminator_dense
from lorenz_gan.gan import predict_stochastic, generator_dense_stoch, discriminator_conv_concrete, generator_dense_auto_stoch
from lorenz_gan.gan import train_gan, initialize_gan, normalize_data, generator_conv_concrete, unnormalize_data
from lorenz_gan.submodels import AR1RandomUpdater, SubModelHist, SubModelPoly, SubModelPolyAdd, SubModelANNRes, SubModelANN
import xarray as xr
import tensorflow.compat.v1.keras.backend as K
from tensorflow.keras.optimizers import Adam
import numpy as np
import pickle
import pandas as pd
import yaml
import argparse
from os.path import exists, join
from os import mkdir
def main():
"""
This script runs the Lorenz '96 model and then trains a generative adversarial network
to parameterize the unresolved Y values. The script requires a config file as input.
The config file is formatted in the yaml format with the following information included.
lorenz: # The Lorenz model subsection
K: 8 # number of X variables
J: 32 # number of Y variables per X variable
h: 1 # coupling constant
b: 10 # spatial-scale ratio
c: 10 # time scale ratio
F: 30 # forcing term
time_step: 0.001 # time step of Lorenz truth model in MTU
num_steps: 1000000 # number of integration time steps
skip: 5 # number of steps to skip when saving out the model
burn_in: 2000 # number of steps to remove from the beginning of the integration
gan: # The GAN subsection
structure: conv # type of GAN neural network, options are conv or dense
t_skip: 10 # number of time steps to skip when saving data for training
x_skip: 1 # number of X variables to skip
output: sample # Train the neural network to output a "sample" of Ys or the "mean" of the Ys
generator:
num_cond_inputs: 3 # number of conditional X values
num_random_inputs: 13 # number of random values
num_outputs: 32 # number of output variables (should match J)
activation: relu # activation function
min_conv_filters: 32 # number of convolution filters in the last layer of the generator
min_data_width: 4 # width of the data array after the dense layer in the generator
filter_width: 4 # Size of the convolution filters
discriminator:
num_cond_inputs: 3 # number of conditional X values
num_sample_inputs: 32 # number of Y values
activation: relu # Activation function
min_conv_filters: 32 # number of convolution filters in the first layer of the discriminator
min_data_width: 4 # width of the data array before the dense layer in the discriminator
filter_width: 4 # width of the convolution filters
gan_path: ./exp # path where GAN files are saved
batch_size: 64 # Number of examples per training batch
gan_index: 0 # GAN configuration number
loss: binary_crossentropy # Loss function for the GAN
num_epochs: [1, 5, 10] # Epochs after which the GAN model is saved
metrics: ["accuracy"] # Metrics to calculate along with the loss
output_nc_file: ./exp/lorenz_output.nc # Where Lorenz 96 data is output
output_csv_file: ./exp/lorenz_combined_output.csv # Where flat file formatted data is saved
Returns:
"""
parser = argparse.ArgumentParser()
parser.add_argument("config", default="lorenz.yaml", help="Config yaml file")
parser.add_argument("-r", "--reload", action="store_true", default=False, help="Reload netCDF and csv files")
parser.add_argument("-g", "--gan", action="store_true", default=False, help="Train GAN")
args = parser.parse_args()
config_file = args.config
with open(config_file) as config_obj:
config = yaml.load(config_obj)
if not exists(config["gan"]["gan_path"]):
mkdir(config["gan"]["gan_path"])
u_scale = config["lorenz"]["h"] * config["lorenz"]["c"] / config["lorenz"]["b"]
saved_steps = (config["lorenz"]["num_steps"] - config["lorenz"]["burn_in"]) // config["lorenz"]["skip"]
split_step = int(config["lorenz"]["train_test_split"] * saved_steps)
#val_split_step = int(config["lorenz"]["val_split"] * saved_steps)
if args.reload:
print("Reloading csv data")
combined_data = pd.read_csv(config["output_csv_file"])
lorenz_output = xr.open_dataset(config["output_nc_file"])
X_out = lorenz_output["lorenz_x"].values
else:
X_out, Y_out, times, steps = generate_lorenz_data(config["lorenz"])
print(X_out.shape, Y_out.shape, saved_steps, split_step)
combined_data = process_lorenz_data(X_out[:split_step], times[:split_step],
steps[:split_step],
config["lorenz"]["J"], config["lorenz"]["F"],
config["lorenz"]["time_step"] * config["lorenz"]["skip"],
config["gan"]["x_skip"],
config["gan"]["t_skip"], u_scale)
combined_test_data = process_lorenz_data(X_out[split_step:], times[split_step:],
steps[split_step:],
config["lorenz"]["J"], config["lorenz"]["F"],
config["lorenz"]["time_step"] * config["lorenz"]["skip"],
config["gan"]["x_skip"],
config["gan"]["t_skip"], u_scale)
save_lorenz_output(X_out, Y_out, times, steps, config["lorenz"], config["output_nc_file"])
combined_data.to_csv(config["output_csv_file"], index=False)
combined_test_data.to_csv(str(config["output_csv_file"]).replace(".csv", "_test.csv"))
train_random_updater(X_out[:, 1], config["random_updater"]["out_file"])
u_vals = combined_data["u_scale"] * combined_data["Ux_t+1"]
train_histogram(combined_data["X_t"].values,
u_vals, **config["histogram"])
train_poly(combined_data["X_t"].values, u_vals, **config["poly"])
x_time_series = X_out[:split_step-1, 0:1]
u_time_series = (-X_out[:split_step-1, -1] * (X_out[:split_step-1, -2] - X_out[:split_step-1, 1])
- X_out[:split_step-1, 0] + config["lorenz"]["F"]) \
- (X_out[1:split_step, 0] - X_out[:split_step-1, 0]) / config["lorenz"]["time_step"] / config["lorenz"]["skip"]
#x_val_time_series = X_out[split_step:val_split_step - 1, 0:1]
#u_val_time_series = (-X_out[split_step:val_split_step - 1, -1] * (X_out[split_step:val_split_step - 1, -2] - X_out[split_step:val_split_step - 1, 1])
# - X_out[split_step:val_split_step - 1, 0] + config["lorenz"]["F"]) \
# - (X_out[split_step + 1:val_split_step, 0] - X_out[split_step:val_split_step - 1, 0]) / config["lorenz"]["time_step"] / \
# config["lorenz"]["skip"]
combined_time_series = pd.DataFrame({"X_t": x_time_series[1:].ravel(), "Ux_t": u_time_series[:-1],
"Ux_t+1": u_time_series[1:]}, columns=["X_t", "Ux_t", "Ux_t+1"])
print(u_time_series.min(), u_time_series.max(), u_time_series.mean())
combined_time_series.to_csv(config["output_csv_file"].replace(".csv", "_ts_val.csv"))
if "poly_add" in config.keys():
train_poly_add(x_time_series,
u_time_series,
**config["poly_add"])
if "ann" in config.keys():
train_ann(combined_data["X_t"].values.reshape(-1, 1),
combined_data["Ux_t+1"].values.reshape(-1, 1),
config["ann"])
if "ann_res" in config.keys():
print("X in", x_time_series.min(), x_time_series.max())
print("U out", u_time_series.min(), u_time_series.max())
train_ann_res(x_time_series,
u_time_series,
config["ann_res"])
if args.gan:
train_lorenz_gan(config, combined_data, combined_time_series)
return
def generate_lorenz_data(config):
"""
Run the Lorenz '96 truth model
Args:
config:
Returns:
"""
x = np.zeros(config["K"], dtype=np.float32)
# initialize Y array
y = np.zeros(config["J"] * config["K"], dtype=np.float32)
x[0] = 1
y[0] = 1
skip = config["skip"]
x_out, y_out, times, steps = run_lorenz96_truth(x, y, config["h"], config["F"], config["b"],
config["c"], config["time_step"], config["num_steps"],
config["burn_in"], skip)
return x_out, y_out, times, steps
def train_lorenz_gan(config, combined_data, combined_time_series):
"""
Train GAN on Lorenz data
Args:
config:
combined_data:
Returns:
"""
if "num_procs" in config.keys():
num_procs = config["num_procs"]
else:
num_procs = 1
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(intra_op_parallelism_threads=num_procs,
inter_op_parallelism_threads=1))
K.set_session(sess)
x_cols = config["gan"]["cond_inputs"]
y_cols = config["gan"]["output_cols"]
X_series = combined_data[x_cols].values
Y_series = combined_data[y_cols].values
X_norm, X_scaling_values = normalize_data(X_series)
if config["gan"]["output"].lower() == "mean":
Y_norm, Y_scaling_values = normalize_data(np.expand_dims(Y_series.mean(axis=1), axis=-1))
else:
Y_norm, Y_scaling_values = normalize_data(Y_series)
X_scaling_values.to_csv(join(config["gan"]["gan_path"],
"gan_X_scaling_values_{0:04d}.csv".format(config["gan"]["gan_index"])),
index_label="Channel")
Y_scaling_values.to_csv(join(config["gan"]["gan_path"],
"gan_Y_scaling_values_{0:04d}.csv".format(config["gan"]["gan_index"])),
index_label="Channel")
trim = X_norm.shape[0] % config["gan"]["batch_size"]
if config["gan"]["structure"] == "dense":
gen_model = generator_dense(**config["gan"]["generator"])
disc_model = discriminator_dense(**config["gan"]["discriminator"])
rand_vec_length = config["gan"]["generator"]["num_random_inputs"]
elif config["gan"]["structure"] == "specified_random":
gen_model = generator_dense_stoch(**config["gan"]["generator"])
disc_model = discriminator_dense(**config["gan"]["discriminator"])
rand_vec_length = config["gan"]["generator"]["num_random_inputs"] + \
2 * config["gan"]["generator"]["num_hidden_neurons"] + \
config["gan"]["generator"]["num_cond_inputs"]
elif config["gan"]["structure"] == "auto_stoch":
gen_model = generator_dense_auto_stoch(**config["gan"]["generator"])
disc_model = discriminator_dense(**config["gan"]["discriminator"])
rand_vec_length = config["gan"]["generator"]["num_random_inputs"] + \
2 * config["gan"]["generator"]["num_hidden_neurons"] + \
config["gan"]["generator"]["num_cond_inputs"]
elif config["gan"]["structure"] == "concrete":
gen_model = generator_conv_concrete(**config["gan"]["generator"])
disc_model = discriminator_conv_concrete(**config["gan"]["discriminator"])
rand_vec_length = config["gan"]["generator"]["num_random_inputs"]
else:
gen_model = generator_conv(**config["gan"]["generator"])
disc_model = discriminator_conv(**config["gan"]["discriminator"])
rand_vec_length = config["gan"]["generator"]["num_random_inputs"]
optimizer = Adam(lr=config["gan"]["learning_rate"], beta_1=0.5, beta_2=0.9)
loss = config["gan"]["loss"]
gen_disc = initialize_gan(gen_model, disc_model, loss, optimizer, config["gan"]["metrics"])
if trim > 0:
Y_norm = Y_norm[:-trim]
X_norm = X_norm[:-trim]
train_gan(np.expand_dims(Y_norm, -1), X_norm, gen_model, disc_model, gen_disc, config["gan"]["batch_size"],
rand_vec_length, config["gan"]["gan_path"],
config["gan"]["gan_index"], config["gan"]["num_epochs"], config["gan"]["metrics"])
gen_pred_func = predict_stochastic(gen_model)
x_ts_norm, _ = normalize_data(combined_time_series[x_cols].values,
scaling_values=X_scaling_values)
gen_ts_pred_norm = gen_pred_func([x_ts_norm,
np.zeros((x_ts_norm.shape[0], rand_vec_length)), 0])[0]
print(gen_ts_pred_norm.shape)
gen_ts_preds = unnormalize_data(gen_ts_pred_norm, scaling_values=Y_scaling_values)
gen_ts_residuals = combined_time_series[y_cols].values.ravel() - gen_ts_preds.ravel()
train_random_updater(gen_ts_residuals,
config["random_updater"]["out_file"].replace(".pkl",
"_{0:04d}.pkl".format(config["gan"]["gan_index"])))
def train_random_updater(data, out_file):
random_updater = AR1RandomUpdater()
random_updater.fit(data)
print("AR1 Corr:", random_updater.corr)
print("AR1 Noise SD:", random_updater.noise_sd)
with open(out_file, "wb") as out_file_obj:
pickle.dump(random_updater, out_file_obj, pickle.HIGHEST_PROTOCOL)
def train_histogram(x_data, u_data, num_x_bins=10, num_u_bins=10, out_file="./histogram.pkl"):
hist_model = SubModelHist(num_x_bins, num_u_bins)
hist_model.fit(x_data, u_data)
with open(out_file, "wb") as out_file_obj:
pickle.dump(hist_model, out_file_obj, pickle.HIGHEST_PROTOCOL)
def train_poly(x_data, u_data, num_terms=3, noise_type="additive", out_file="./poly.pkl"):
poly_model = SubModelPoly(num_terms=num_terms, noise_type=noise_type)
poly_model.fit(x_data, u_data)
with open(out_file, "wb") as out_file_obj:
pickle.dump(poly_model, out_file_obj, pickle.HIGHEST_PROTOCOL)
return
def train_poly_add(x_data, u_data, num_terms=3, out_file="./poly_add.pkl"):
poly_add_model = SubModelPolyAdd(num_terms=num_terms)
poly_add_model.fit(x_data, u_data)
with open(out_file, "wb") as out_file_obj:
pickle.dump(poly_add_model, out_file_obj, pickle.HIGHEST_PROTOCOL)
def train_ann(x_data, u_data, config):
print("ANN Input shapes", x_data.shape, u_data.shape)
ann_model = SubModelANN(**config)
ann_model.fit(x_data, u_data)
ann_model.save_model(config["out_path"])
def train_ann_res(x_data, u_data, config):
ann_res_model = SubModelANNRes(**config)
ann_res_model.fit(x_data, u_data)
ann_res_model.save_model(config["out_path"])
if __name__ == "__main__":
main()