-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbpxor1.conf
77 lines (64 loc) · 1.73 KB
/
bpxor1.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
% true oznaczałoby losowanie wag dla neuronów, weights jest wtedy ignorowane
random_weights = true;
% dane wejściowe
input_data = [
0 0;
0 1;
1 0;
1 1;
];
expected = [
0;
1;
1;
0;
];
%global epochs = [1 8000 16000 24000]
global learn = true
global stages = [1 5000]
global etas = [0.9 0.9]
global momentums = [0.9 0.9]
global layers = {};
learn_steps = 1000;
% pierwsza warstwa
% liczba neuronów w warstwie
layers{1}.type='bp';
layers{1}.neurons = 2;
%layers{1}.row_count = 1;
% funkcja aktywacji
layers{1}.activation_function =@(X) sigmoid(X);
% wartość bias
layers{1}.bias = 1.0;
% przedział, z którego są losowane wagi
layers{1}.rand_min = -1.0;
layers{1}.rand_max = 1.0;
layers{1}.neighbourhood_width = [0 0 0 0 0];%[7.0 5.0 3.0 1.0];
layers{1}.conscience_coefficient = [1.0 0.5 0.25 0.125 0]; %[0 0 0 0];%
layers{1}.learning_coefficient = [0.06 0.03 0.015 0.0075 0];
layers{1}.learn = true;
layers{1}.random_weights = false;
layers{1}.weights = [ 0.084876 0.559923 -0.471932;
-0.147429 0.116434 -0.095994
]
layers{1}.epochs = [1 1000 2000 2500 3000];
layers{1}.delta = 0.0;
layers{2}.type='bp';
layers{2}.neurons = 1;
%layers{1}.row_count = 1;
% funkcja aktywacji
layers{2}.activation_function =@(X) sigmoid(X);
% wartość bias
layers{2}.bias = 1.0;
% przedział, z którego są losowane wagi
layers{2}.rand_min = -1.0;
layers{2}.rand_max = 1.0;
layers{2}.neighbourhood_width = [0 0 0 0 0];%[7.0 5.0 3.0 1.0];
layers{2}.conscience_coefficient = [1.0 0.5 0.25 0.125 0]; %[0 0 0 0];%
layers{2}.learning_coefficient = [0.06 0.03 0.015 0.0075 0];
layers{2}.learn = true;
layers{2}.random_weights = false;
layers{2}.weights = [
0.46987 -0.67890 0.38352
]
layers{2}.epochs = [1 1000 2000 2500 3000];
layers{2}.delta = 0.0;