From 8389143b40acc9be1ae43e7ac63adc07fba09d6c Mon Sep 17 00:00:00 2001 From: Dmytro Korenkevych Date: Fri, 13 Dec 2024 11:58:35 -0800 Subject: [PATCH] WIP documentation generation via gh actions (#107) Summary: Pull Request resolved: https://github.com/facebookresearch/Pearl/pull/107 Differential Revision: D67157339 --- .github/workflows/CI.yml | 58 ++++++++++++++----- pearl/api/action_result.py | 6 +- .../history_summarization_module.py | 2 +- .../common/epistemic_neural_networks.py | 16 ++--- 4 files changed, 55 insertions(+), 27 deletions(-) diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 34f20df4..3851971d 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -5,32 +5,60 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: - os: [ubuntu-latest, macos-latest, windows-latest] + os: [ubuntu-latest] env: OS: ${{ matrix.os }} - PYTHON: '3.9' + PYTHON: "3.10" steps: - uses: actions/checkout@v4 - name: Setup Python uses: actions/setup-python@v4 with: - python-version: 3.9 + python-version: "3.10" - name: Install dependencies run: | + pip install pdoc3 pip install pytest pip install pytest-cov pip install -e . - - name: Generate coverage report + - name: Update documentation run: | - pytest --cov=./ --cov-report=xml - - name: Upload coverage to Codecov - if: success() || failure() - uses: codecov/codecov-action@v4 + pdoc --html pearl.neural_networks.sequential_decision_making --html-dir html --force + - name: Upload docs artifacts + uses: actions/upload-artifact@v4 with: - env_vars: OS,PYTHON - file: ./coverage.xml - flags: unittests - name: codecov-umbrella - token: ${{ secrets.CODECOV_TOKEN }} - slug: facebookresearch/Pearl - verbose: true + # Name of the artifact to upload. + # Optional. Default is 'artifact' + name: artifact + + # A file, directory or wildcard pattern that describes what to upload + # Required. + path: html/ + + # The desired behavior if no files are found using the provided path. + # Available Options: + # warn: Output a warning but do not fail the action + # error: Fail the action with an error message + # ignore: Do not output any warnings or errors, the action does not fail + # Optional. Default is 'warn' + if-no-files-found: warn + + # If true, an artifact with a matching name will be deleted before a new one is uploaded. + # If false, the action will fail if an artifact for the given name already exists. + # Does not fail if the artifact does not exist. + # Optional. Default is 'false' + overwrite: true + # - name: Generate coverage report + # run: | + # pytest --cov=./ --cov-report=xml + # - name: Upload coverage to Codecov + # if: success() || failure() + # uses: codecov/codecov-action@v4 + # with: + # env_vars: OS,PYTHON + # file: ./coverage.xml + # flags: unittests + # name: codecov-umbrella + # token: ${{ secrets.CODECOV_TOKEN }} + # slug: facebookresearch/Pearl + # verbose: true diff --git a/pearl/api/action_result.py b/pearl/api/action_result.py index 219fc2ff..c8b38727 100644 --- a/pearl/api/action_result.py +++ b/pearl/api/action_result.py @@ -23,9 +23,9 @@ class ActionResult: reward: Reward terminated: bool truncated: bool - info: dict[str, Any] | None = None - cost: float | None = None - available_action_space: ActionSpace | None = None + info: Optional[dict[str, Any]] = None + cost: Optional[float] = None + available_action_space: Optional[ActionSpace] = None @property def done(self) -> bool: diff --git a/pearl/history_summarization_modules/history_summarization_module.py b/pearl/history_summarization_modules/history_summarization_module.py index 626ebbd6..75e3296e 100644 --- a/pearl/history_summarization_modules/history_summarization_module.py +++ b/pearl/history_summarization_modules/history_summarization_module.py @@ -26,7 +26,7 @@ class HistorySummarizationModule(ABC, nn.Module): @abstractmethod def summarize_history( - self, observation: Observation, action: Action | None + self, observation: Observation, action: Optional[Action] ) -> SubjectiveState: pass diff --git a/pearl/neural_networks/common/epistemic_neural_networks.py b/pearl/neural_networks/common/epistemic_neural_networks.py index 11472c53..2a62a5a5 100644 --- a/pearl/neural_networks/common/epistemic_neural_networks.py +++ b/pearl/neural_networks/common/epistemic_neural_networks.py @@ -37,7 +37,7 @@ def __init__( super().__init__() @abstractmethod - def forward(self, x: Tensor, z: Tensor) -> Tensor: + def forward(self, x: torch.Tensor, z: torch.Tensor) -> torch.Tensor: """ Input: x: Feature vector of state action pairs @@ -71,7 +71,7 @@ def __init__( self.prior_net: nn.Module = mlp_block(input_dim, hidden_dims, output_dim).eval() self.scale = scale - def forward(self, x: Tensor) -> Tensor: + def forward(self, x: torch.Tensor) -> torch.Tensor: """ Input: x: Tensor. Feature vector input @@ -116,7 +116,7 @@ def __init__( self._resample_epistemic_index() - def forward(self, x: Tensor, z: Tensor, persistent: bool = False) -> Tensor: + def forward(self, x: torch.Tensor, z: torch.Tensor, persistent: bool = False) -> torch.Tensor: """ Input: x: Feature vector of state action pairs @@ -176,14 +176,14 @@ def generate_params_buffers(self) -> None: self.params, self.buffers = torch.func.stack_module_state(self.models) def call_single_model( - self, params: dict[str, Any], buffers: dict[str, Any], data: Tensor - ) -> Tensor: + self, params: dict[str, Any], buffers: dict[str, Any], data: torch.Tensor + ) -> torch.Tensor: """ Method for parallelizing priornet forward passes with torch.vmap. """ return torch.func.functional_call(self.base_model, (params, buffers), (data,)) - def forward(self, x: Tensor, z: Tensor) -> Tensor: + def forward(self, x: torch.Tensor, z: torch.Tensor) -> torch.Tensor: """ Perform forward pass on the priornet ensemble and weight by epistemic index x and z are assumed to already be formatted. @@ -235,7 +235,7 @@ def __init__( self.input_dim, self.prior_hiddens, self.output_dim, self.index_dim ) - def format_xz(self, x: Tensor, z: Tensor) -> Tensor: + def format_xz(self, x: torch.Tensor, z: torch.Tensor) -> torch.Tensor: """ Take cartesian product of x and z and concatenate for forward pass. Input: @@ -251,7 +251,7 @@ def format_xz(self, x: Tensor, z: Tensor) -> Tensor: xz = torch.cat([x_expanded, z_expanded], dim=-1) return xz.view(batch_size * num_indices, d + self.index_dim) - def forward(self, x: Tensor, z: Tensor, persistent: bool = False) -> Tensor: + def forward(self, x: torch.Tensor, z: torch.Tensor, persistent: bool = False) -> torch.Tensor: """ Input: x: Feature vector containing item and user embeddings and interactions