forked from cozygene/feather
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsamc.py
173 lines (126 loc) · 5.77 KB
/
samc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import scipy.stats
import attr
try:
from tqdm import *
except:
trange = lambda *args, **kw: range(*args, **kws)
tqdm = lambda x, *args, **kw: x
###############################################################################################
# General SAMC implementation (Yu. et al, Biostatistics 2011)
#
@attr.s
class SAMCParameters(object):
# x0 - Initial data point to start from
x0 = attr.ib()
# test_statistic_func - Function that returns the test statistic (used only for debugging) and identity of the partition of a data point x
test_statistic_func = attr.ib()
# generate_sample_func - Function that accepts a data point x, and returns a new data point y, and the ratio q(x|y)/q(y|x)
generate_sample_func = attr.ib()
# required_sampling_distribution - The required sampling distribution across partitions
required_sampling_distribution = attr.ib(default=None)
# theta0 - Inital estimate for the log probability of the different partitions
theta0 = attr.ib(default=None)
# psi - Relative weights of sampled points (in log)
log_psi = attr.ib(default=lambda x: 0)
# t0 - Value used in gain factor sequence
t0 = attr.ib(default=1000)
# n_iterations - Number of iterations after which to stop
n_iterations = attr.ib(default=100000)
# relative_sampling_error_threshold - Relative sampling error threshold below which to stop
relative_sampling_error_threshold = attr.ib(default=0.2)
# fix_theta - For debugging, just use theta0 and don't change it
fix_theta = attr.ib(default=False)
# step_size_power - 1 for SAMC, <1 for Polyak-Ruppert
step_size_power = attr.ib(default=1.0)
def SAMC(samc_parameters):
"""
samc_parameters - An SAMCParameters instance
"""
_p = samc_parameters
# Initialize values for algorithm
current_x = _p.x0
current_theta = np.array(_p.theta0)
current_statistic, current_partition = _p.test_statistic_func(current_x, 0)
observed_sampling_distribution = np.zeros_like(_p.required_sampling_distribution)
m = len(_p.required_sampling_distribution)
# Statistics to aggregate
statistics = []
with trange(_p.n_iterations, leave=False) as T:
for n_iter in T:
# Draw a new data point
y, proposal_ratio = _p.generate_sample_func(current_x)
# Calculate the ratio for MH
suggested_statistic, suggested_partition = _p.test_statistic_func(y, current_partition)
if _p.fix_theta:
r = np.exp(_p.theta0[current_partition] - _p.theta0[suggested_partition] + _p.log_psi(y) - _p.log_psi(current_x)) * proposal_ratio
else:
r = np.exp(current_theta[current_partition] - current_theta[suggested_partition] + _p.log_psi(y) - _p.log_psi(current_x)) * proposal_ratio
# Accept in probability min(1, r)
updated = False
if np.random.uniform(size=1)[0] <= min(1, r):
updated = True
current_x = y
current_statistic, current_partition = suggested_statistic, suggested_partition
# Update observed sampling distribution
statistics.append([updated, current_partition, current_statistic, current_theta.copy(), r])
#print r, samples[-1][0], samples[-1][2:], current_theta
observed_sampling_distribution[current_partition] += 1
# Update weights
d = -np.array(_p.required_sampling_distribution)
d[current_partition] += 1
gain_factor = (float(_p.t0) / max(_p.t0, n_iter)) ** _p.step_size_power
current_theta += gain_factor * d
# Decide if we should stop
m0 = sum(observed_sampling_distribution == 0)
relative_sampling_error = max(abs(observed_sampling_distribution/float(n_iter+1) - 1.0/(m-m0)) / (1.0/(m-m0)))
# chisquare = scipy.stats.chisquare(observed_sampling_distribution)
# regp = sm.OLS(observed_sampling_distribution, sm.add_constant(np.arange(len(observed_sampling_distribution)))).fit().pvalues[-1]
# if n_iter % (_p.n_iterations/10) == 1:
# T.write("RSE: %f\t Chi^2 p, log10(p): %f %f\t LinReg p, log10(p): %f %f" % (relative_sampling_error, chisquare.pvalue, np.log10(chisquare.pvalue), regp, np.log10(regp)))
if relative_sampling_error < _p.relative_sampling_error_threshold:
break
return current_theta, observed_sampling_distribution, statistics, relative_sampling_error
@attr.s
class SAMCSimpleParameters(SAMCParameters):
n_partitions = attr.ib(default=None)
def SAMC_simple(samc_simple_parameters):
"""
samc_simple_parameters - An SAMCSimpleParameters instance
"""
_p = samc_simple_parameters
_p.required_sampling_distribution = np.ones(_p.n_partitions) / float(_p.n_partitions)
_p.log_psi = lambda x: 0.0
_p.theta0 = np.ones(_p.n_partitions) / float(_p.n_partitions)
return SAMC(_p)
###############################################################################################
# Several simple SAMC cases
#
#
# Two-sample t-test (Yu. et al, Biostatistics 2011)
#
import bisect
def SAMC_two_sample_t_test(n_partitions, n_iterations, n=100, replace_proportion=0.05):
def two_sample_test_statistic(x, partitions):
t, p = scipy.stats.ttest_ind(x[0], x[1])
j = bisect.bisect(partitions, t)
return (t,p), j
def two_sample_generate_sample(x):
L = int(replace_proportion*n)
inds0 = np.random.choice(range(n), L, replace=True)
inds1 = np.random.choice(range(n), L, replace=True)
y = x.copy()
for l in range(L):
y[0, inds0[l]], y[1, inds1[l]] = y[1, inds1[l]], y[0, inds0[l]]
return y, 1.0
x0 = vstack([np.random.normal(1, 1, size=n), np.random.normal(0, 1, size=n)])
observed_statistic, p = scipy.stats.ttest_ind(x0[0], x0[1])
#print observed_statistic, p
partitions = np.concatenate([np.arange(0, observed_statistic, observed_statistic/n_partitions)[1:], [observed_statistic]])
return SAMC_simple(SAMCSimpleParameters(
x0=x0,
test_statistic_func=lambda x, cp: two_sample_test_statistic(x, partitions),
generate_sample_func=two_sample_generate_sample,
n_iterations=n_iterations,
n_partitions=1000,
relative_sampling_error_threshold=0))