-
Notifications
You must be signed in to change notification settings - Fork 29
/
downstream_kws_benchmark.py
463 lines (389 loc) · 16.2 KB
/
downstream_kws_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
from fairseq import models
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq import (
checkpoint_utils,
distributed_utils,
options,
quantization_utils,
tasks,
utils,
)
#=====================Model Preparation=====================
import argparse, textwrap
import torch
import torch.nn as nn
import torch.nn.functional as F
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
torch.cuda.set_device(0)
parser = argparse.ArgumentParser(description='downstream pretrained wav2vec model for keyword spotting systems.')
parser.add_argument('pt', type = str, help='pretrained model path')
parser.add_argument('dataset', type = str, help='dataset root directory')
parser.add_argument('name', type = str, help='save model name')
args = parser.parse_args()
save_path = os.path.join('checkpoint',args.name)
os.makedirs(save_path, exist_ok=True)
state_dict = torch.load(args.pt)
cfg = convert_namespace_to_omegaconf(state_dict['args'])
task = tasks.setup_task(cfg.task)
w2v_encoder = task.build_model(cfg.model)
class KWS(nn.Module):
def __init__(self, n_class=30, encoder_hidden_dim=768, cfg=None, state_dict=None):
super(KWS, self).__init__()
self.n_class = n_class
assert not cfg is None
assert not state_dict is None
self.w2v_encoder = task.build_model(cfg.model)
self.w2v_encoder.load_state_dict(state_dict)
out_channels = 112
self.decoder = nn.Sequential(
nn.Conv1d(encoder_hidden_dim, out_channels, 25, dilation=2),
nn.BatchNorm1d(out_channels),
nn.ReLU(),
nn.Conv1d(out_channels, out_channels, 1),
nn.BatchNorm1d(out_channels),
nn.ReLU(),
nn.Conv1d(out_channels, self.n_class, 1)
)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
output = self.w2v_encoder(**x, features_only=True)
output= output['x']
b,t,c = output.shape
output = output.reshape(b,c,t)
output = self.decoder(output).squeeze()
if self.training:
return self.softmax(output)
else:
return output
#=====================Data Loader=====================
import os
import soundfile as sf
from fairseq.data.audio.raw_audio_dataset import *
import torch.utils.data as data
from torch.utils.data.sampler import WeightedRandomSampler
import librosa
import numpy as np
import random
from speech_commands.input_data import AudioProcessor
12 keywords
CLASSES = 'unknown, silence, yes, no, up, down, left, right, on, off, stop, go'.split(', ')
#20+2 keywords
#CLASSES = 'unknown, silence, yes, no, up, down, left, right, on, off, stop, go, zero, one, two, three, four, five, six, seven, eight, nine'.split(', ')
logging.info(f"classes: {CLASSES}")
"""
model = KWS(n_class=len(CLASSES), cfg=cfg, state_dict=state_dict['model']).cuda()
optimizer = torch.optim.Adam([
{'params': model.w2v_encoder.parameters(), 'lr': 1e-5},
#{'params': model.conv.parameters(), 'lr': 5e-4},
{'params': model.decoder.parameters(), 'lr': 5e-4},
], weight_decay=1e-5)
#, weight_decay=1e-5
criterion = torch.nn.CrossEntropyLoss().cuda()
"""
class SpeechCommandsDataset(RawAudioDataset):
#sil=0.1, np=0.5, nl=0.7, sp=0.5, mp=0.5
def __init__(self, mode='train', root='/root/storage/dataset/speech_commands/',
sample_rate=16000, loudest_section=True, silence_percentage=0.1, noise_prob=0.5, noise_level=0.7, shift_prob=0.5, mask_prob=0.5, mask_len=0.1, tf_audio_processor=None, benc_size=None):
super(SpeechCommandsDataset, self).__init__(
sample_rate,
pad=False
)
self.mode = mode
self.root = root
self.mode_root = os.path.join(root,self.mode)
self.ap = tf_audio_processor
self.benc_size = benc_size
self.loudest_section = loudest_section
self.sample_rate = sample_rate
self.data = list()
if self.benc_size == None:
self.prep_dataset()
else:
self.prep_benc_dataset()
if self.mode=='training':
self.noise_data = list()
self.prep_noise_dataset()
self.noise_prob = noise_prob
self.noise_level = noise_level
self.shift_prob = shift_prob
self.mask_prob = mask_prob
self.mask_len = mask_len
def prep_dataset(self):
if self.ap is None:
self.id = 0
for c in CLASSES:
for root, dir, files in os.walk(os.path.join(self.mode_root,c)):
for file in files:
f_path, cmd = os.path.join(root, file), c
self.data.append((f_path, cmd, self.id))
self.id += 1
else:
self.id = 0
tf_data = self.ap.data_index[self.mode]
for td in tf_data:
f_path, cmd = td['file'], td['label']
if cmd=='_silence_':
self.data += [('','silence',self.id)]
elif cmd in CLASSES:
self.data.append((f_path, cmd, self.id))
elif not cmd in CLASSES:
self.data.append((f_path, 'unknown', self.id))
self.id += 1
print(f"{self.mode} data number: {len(self.data)}")
def prep_benc_dataset(self):
data_num_chk = dict()
for c in CLASSES:
data_num_chk[c] = 0
if self.ap is None:
self.id = 0
for c in CLASSES:
for root, dir, files in os.walk(os.path.join(self.mode_root,c)):
for file in files:
if data_num_chk[c] == self.benc_size:
break
f_path, cmd = os.path.join(root, file), c
self.data.append((f_path, cmd, self.id))
self.id += 1
data_num_chk[c] += 1
if data_num_chk[c] == self.benc_size:
break
else:
self.id = 0
tf_data = self.ap.data_index[self.mode]
for td in tf_data:
f_path, cmd = td['file'], td['label']
if not cmd in CLASSES:
if cmd=='_silence_':
cmd = 'silence'
else:
cmd = 'unknown'
if data_num_chk[cmd] == self.benc_size:
continue
if cmd=='silence':
self.data += [('','silence',self.id)]
elif cmd=='unknown':
self.data.append((f_path, 'unknown', self.id))
elif cmd in CLASSES:
self.data.append((f_path, cmd, self.id))
data_num_chk[cmd] += 1
self.id += 1
print(f"{self.mode} data number: {len(self.data)}")
def prep_noise_dataset(self):
noise_path = os.path.join(self.root,'_background_noise_')
samples = []
for root, dir, files in os.walk(noise_path):
for file in files:
f_path = os.path.join(root,file)
wav, _ = sf.read(f_path)
samples.append(wav)
samples = np.hstack(samples)
c = int(self.sample_rate)
r = len(samples) // c
self.noise_data = samples[:r*c].reshape(-1, c)
def __getitem__(self, idx):
f_path, cmd, id = self.data[idx]
if f_path:
wav, curr_sample_rate = sf.read(f_path)
if curr_sample_rate!=self.sample_rate:
#scale=True, size=self.sample_rate, mode='edge'
wav, curr_sample_rate = librosa.resample(wav, curr_sample_rate, self.sample_rate), self.sample_rate
if len(wav.shape)==2:
wav = librosa.to_mono(wav.transpose(1,0))
if self.loudest_section:
wav = self.extract_loudest_section(wav)
wav_len = len(wav)
if wav_len < self.sample_rate:
pad_size = self.sample_rate - wav_len
wav = np.pad(wav, (round(pad_size/2)+1,round(pad_size/2)+1), 'constant', constant_values=0)
else:
wav, curr_sample_rate = np.zeros(self.sample_rate, dtype=np.float32), self.sample_rate
wav_len = len(wav)
mid = int(len(wav)/2)
cut_off = int(self.sample_rate/2)
wav = wav[mid-cut_off:mid+cut_off]
if self.mode=='training':
if random.random()<self.shift_prob:
percentage = random.uniform(-self.shift_prob, self.shift_prob)
d = int(self.sample_rate*percentage)
wav = np.roll(wav, d)
if d>0:
wav[:d] = 0
else:
wav[d:] = 0
if random.random()<self.mask_prob:
t = int(self.mask_len*self.sample_rate)
t0 = random.randint(0, self.sample_rate - t)
wav[t0:t+t0] = 0
if random.random()<self.noise_prob:
noise = random.choice(self.noise_data)
if cmd=='silence':
percentage = random.uniform(0, 1)
wav = wav * (1 - percentage) + noise * percentage
else:
percentage = random.uniform(0, self.noise_level)
wav = wav * (1 - percentage) + noise * percentage
feats = torch.from_numpy(wav).float()
feats = self.postprocess(feats, curr_sample_rate)
y = CLASSES.index(cmd)
return {"id": id, "target": y, "source": feats}
def extract_loudest_section(self, wav, win_len=30):
wav_len = len(wav)
temp = abs(wav)
st,et = 0,0
max_dec = 0
for ws in range(0, wav_len, win_len):
cur_dec = temp[ws:ws+16000].sum()
if cur_dec >= max_dec:
max_dec = cur_dec
st,et = ws, ws+16000
if ws+16000 > wav_len:
break
return wav[st:et]
def __len__(self):
return len(self.data)
def make_weights_for_balanced_classes(self):
nclasses = len(CLASSES)
count = np.zeros(nclasses)
for item in self.data:
count[CLASSES.index(item[1])] += 1
N = float(sum(count))
weight_per_class = N / count
weight = np.zeros(len(self))
for idx, item in enumerate(self.data):
weight[idx] = weight_per_class[CLASSES.index(item[1])]
return weight
tf_ap_model_settings = {
"desired_samples": 160,
"fingerprint_size": 40,
"label_count": 10,
"window_size_samples": 100,
"window_stride_samples": 100,
"fingerprint_width": 40,
"preprocess": "mfcc",
}
tf_ap_classes = CLASSES[2:]
tf_ap = AudioProcessor("", args.dataset, 10, 10,
tf_ap_classes, 10, 10, tf_ap_model_settings,
os.path.join(args.dataset,'split'))
def _collate_fn(samples):
sub_samples = [s for s in samples if s["source"] is not None]
if len(sub_samples) == 0:
return {}
batch = test_dataset.collater(samples)
batch['target'] = torch.LongTensor([s["target"] for s in sub_samples])
return batch
#=====================Training=====================
logging.info(model)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
logging.info(params)
with open(args.name+'.txt', 'a+') as f:
f.write(f"{args.name} dataset benchmark\n")
from tqdm import tqdm
import logging
logging.basicConfig(filename='log.log',level=logging.INFO)
def save(name, model, epoch, optimizer, loss, acc):
path = os.path.join(save_path,name)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
'acc': acc,
}, path)
epochs = 100
print_step = 10
save_epoch = 10
for bes in [200]:
model = KWS(n_class=len(CLASSES), cfg=cfg, state_dict=state_dict['model']).cuda()
optimizer = torch.optim.Adam([
{'params': model.w2v_encoder.parameters(), 'lr': 1e-5},
#{'params': model.conv.parameters(), 'lr': 5e-4},
{'params': model.decoder.parameters(), 'lr': 5e-4},
], weight_decay=1e-5)
#, weight_decay=1e-5
criterion = torch.nn.CrossEntropyLoss().cuda()
batch_size = 128
train_dataset = SpeechCommandsDataset(root=args.dataset, mode='training', tf_audio_processor=tf_ap, benc_size=bes)
test_dataset = SpeechCommandsDataset(root=args.dataset, mode='testing', tf_audio_processor=tf_ap)
#weights = train_dataset.make_weights_for_balanced_classes()
#sampler = WeightedRandomSampler(weights, len(weights))
train_dataloader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True,
collate_fn=_collate_fn, num_workers=4)
test_dataloader = data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, pin_memory=True,
collate_fn=_collate_fn, num_workers=4)
best_acc = 0
best_bes_acc = 0
for epoch in range(epochs):
pbar = tqdm(train_dataloader)
total_loss = 0
total_sample = 0
correct = 0
model.train()
cur_step = 0
logging.info("[training]training start")
for batch in pbar:
optimizer.zero_grad()
x, y = batch['net_input'], batch['target']
for k in x.keys():
x[k] = x[k].cuda()
y = y.cuda()
logits = model(x)
#print(logits.shape)
#print(logits)
#print(y.shape)
loss = criterion(logits,y)
total_loss += loss.item()
total_sample += y.size(0)
pred = logits.data.max(1, keepdim=True)[1].squeeze()
#print(pred)
#print(y)
correct += pred.eq(y.data.view_as(pred)).sum().item()
#print(correct, total_sample)
loss.backward()
optimizer.step()
cur_step += 1
acc = (correct/total_sample)*100
pbar.set_description("loss: {} acc:{:.2f}".format(total_loss/cur_step, acc))
#if cur_step%print_step==0:
# logging.info("[training]epoch {}\tloss: {}\tacc:{}\t".format(epoch,total_loss/cur_step, (correct/total_sample)*100))
logging.info("[test]test start")
with torch.no_grad():
pbar = tqdm(test_dataloader)
total_loss = 0
total_sample = 0
correct = 0
cur_step = 0
model.eval()
for batch in pbar:
x, y = batch['net_input'], batch['target']
for k in x.keys():
x[k] = x[k].cuda()
y = y.cuda()
logits = model(x)
loss = criterion(logits,y)
total_loss += loss.item()
total_sample += y.size(0)
pred = logits.data.max(1, keepdim=True)[1].squeeze()
#print(pred)
#print(y)
cur_step += 1
correct += pred.eq(y.data.view_as(pred)).sum().item()
#print(correct, total_sample)
acc = (correct/total_sample)*100
pbar.set_description("[test]epoch {} loss: {} acc:{:.2f}".format(epoch,total_loss/cur_step, acc))
if acc>best_acc:
best_acc = acc
best_bes_acc = acc
save('best_model.pth', model, epoch, optimizer, loss, acc)
#if epoch%save_epoch==0:
# save('{}epoch-{:.2f}acc.pth'.format(epoch, acc)
# , model, epoch, optimizer, loss, acc)
save('latest_model.pth', model, epoch, optimizer, loss, acc)
logging.info("best acc: {:.2f}".format(best_acc))
#logging.info("[test]epoch {}\tloss: {}\tacc:{}\t".format(epoch,total_loss/cur_step, (correct/total_sample)*100))
with open(args.name+'.txt', 'a+') as f:
f.write(f"{bes}\t{best_bes_acc}\n")