forked from soniya-mehta/deploy-churnapp-streamlit
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
131 lines (84 loc) · 2.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# coding: utf-8
import pickle
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.feature_extraction import DictVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
# parameters
C = 1.0
n_splits = 5
output_file = f'model_C={C}.bin'
# data preparation
df = pd.read_csv('WA_Fn-UseC_-Telco-Customer-Churn.csv')
df.columns = df.columns.str.lower().str.replace(' ', '_')
categorical_columns = list(df.dtypes[df.dtypes == 'object'].index)
for c in categorical_columns:
df[c] = df[c].str.lower().str.replace(' ', '_')
df.totalcharges = pd.to_numeric(df.totalcharges, errors='coerce')
df.totalcharges = df.totalcharges.fillna(0)
df.churn = (df.churn == 'yes').astype(int)
df_full_train, df_test = train_test_split(df, test_size=0.2, random_state=1)
numerical = ['tenure', 'monthlycharges', 'totalcharges']
categorical = [
'gender',
'seniorcitizen',
'partner',
'dependents',
'phoneservice',
'multiplelines',
'internetservice',
'onlinesecurity',
'onlinebackup',
'deviceprotection',
'techsupport',
'streamingtv',
'streamingmovies',
'contract',
'paperlessbilling',
'paymentmethod',
]
# training
def train(df_train, y_train, C=1.0):
dicts = df_train[categorical + numerical].to_dict(orient='records')
dv = DictVectorizer(sparse=False)
X_train = dv.fit_transform(dicts)
model = LogisticRegression(C=C, max_iter=1000)
model.fit(X_train, y_train)
return dv, model
def predict(df, dv, model):
dicts = df[categorical + numerical].to_dict(orient='records')
X = dv.transform(dicts)
y_pred = model.predict_proba(X)[:, 1]
return y_pred
# validation
print(f'doing validation with C={C}')
kfold = KFold(n_splits=n_splits, shuffle=True, random_state=1)
scores = []
fold = 0
for train_idx, val_idx in kfold.split(df_full_train):
df_train = df_full_train.iloc[train_idx]
df_val = df_full_train.iloc[val_idx]
y_train = df_train.churn.values
y_val = df_val.churn.values
dv, model = train(df_train, y_train, C=C)
y_pred = predict(df_val, dv, model)
auc = roc_auc_score(y_val, y_pred)
scores.append(auc)
print(f'auc on fold {fold} is {auc}')
fold = fold + 1
print('validation results:')
print('C=%s %.3f +- %.3f' % (C, np.mean(scores), np.std(scores)))
# training the final model
print('training the final model')
dv, model = train(df_full_train, df_full_train.churn.values, C=1.0)
y_pred = predict(df_test, dv, model)
y_test = df_test.churn.values
auc = roc_auc_score(y_test, y_pred)
print(f'auc={auc}')
# Save the model
with open(output_file, 'wb') as f_out:
pickle.dump((dv, model), f_out)
print(f'the model is saved to {output_file}')