-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining.py
188 lines (136 loc) · 7.01 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# coding: utf-8
import torch
import pandas as pd
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
#import gluonnlp as nlp
import numpy as np
from tqdm import tqdm, notebook
from tokenization_kobert import KoBertTokenizer
from transformers import AdamW
from transformers import BertModel, DistilBertModel
from transformers.optimization import get_cosine_schedule_with_warmup
device = torch.device("cpu") # initiate GPU
bertmodel = BertModel.from_pretrained('monologg/kobert')
df_train = pd.read_excel('train.xlsx')
df_validatation = pd.read_excel('validation.xlsx')
df_train = df_train[df_train['감정_대분류'].str.contains('분노|슬픔|불안|당황|상처|기쁨')]
df_train['감정_대분류'] = df_train['감정_대분류'].replace(['분노', '슬픔', '불안', '당황', '상처', '기쁨', '분노 ', '슬픔 ', '불안 ', '당황 ', '상처 ', '기쁨 '], [0,1,2,3,4,5,0,1,2,3,4,5])
df_train.head()
df_train_data = []
for q, label in zip(df_train['사람문장1'], df_train['감정_대분류']) :
data = []
data.append(q)
data.append(str(label))
df_train_data.append(data)
df_validatation = df_validatation[df_validatation['감정_대분류'].str.contains('분노|슬픔|불안|당황|상처|기쁨')]
df_validatation['감정_대분류'] = df_validatation['감정_대분류'].replace(['분노', '슬픔', '불안', '당황', '상처', '기쁨', '분노 ', '슬픔 ', '불안 ', '당황 ', '상처 ', '기쁨 '], [0,1,2,3,4,5,0,1,2,3,4,5])
df_validatation.head()
df_validation_data = []
for q, label in zip(df_validatation['사람문장1'], df_validatation['감정_대분류']) :
data = []
data.append(q)
data.append(str(label))
df_validation_data.append(data)
tokenizer = KoBertTokenizer.from_pretrained('monologg/kobert')
class BERTDataset(Dataset):
def __init__(self, dataset, sent_idx, label_idx, bert_tokenizer, max_len,
pad, pair):
self.sentences = [(np.array(tokenizer.encode(i[sent_idx], max_length=64, pad_to_max_length=True)).astype(np.int32),
np.array(len(tokenizer.encode(i[sent_idx], max_length=64, pad_to_max_length=False))).astype(np.int32),
np.zeros(shape=(64,), dtype=np.int32)) for i in dataset]
self.labels = [np.int32(i[label_idx]) for i in dataset]
print(self.sentences[0])
def __getitem__(self, i):
return (self.sentences[i] + (self.labels[i], ))
def __len__(self):
return (len(self.labels))
class_num = 6 # set the number of classes
max_len = 64
batch_size = 32
warmup_ratio = 0.1
num_epochs = 5
max_grad_norm = 1
log_interval = 200
learning_rate = 5e-5
data_train = BERTDataset(df_train_data, 0, 1, tokenizer, max_len, True, False)
data_test = BERTDataset(df_validation_data, 0, 1, tokenizer, max_len, True, False)
train_dataloader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, num_workers=0)
test_dataloader = torch.utils.data.DataLoader(data_test, batch_size=batch_size, num_workers=0)
class BERTClassifier(nn.Module):
def __init__(self, bert, hidden_size = 768, num_classes = 6, dr_rate=None, params=None):
super(BERTClassifier, self).__init__()
self.bert = bert
self.dr_rate = dr_rate
self.classifier = nn.Linear(hidden_size , num_classes)
if dr_rate:
self.dropout = nn.Dropout(p=dr_rate)
def gen_attention_mask(self, token_ids, valid_length):
attention_mask = torch.zeros_like(token_ids)
for i, v in enumerate(valid_length):
attention_mask[i][:v] = 1
return attention_mask.float()
def forward(self, token_ids, valid_length, segment_ids):
attention_mask = self.gen_attention_mask(token_ids, valid_length)
_, pooler = self.bert(input_ids = token_ids, token_type_ids = segment_ids.long(), attention_mask = attention_mask.float().to(token_ids.device), return_dict=False)
if self.dr_rate:
out = self.dropout(pooler)
return self.classifier(out)
model = BERTClassifier(bertmodel, dr_rate=0.5).to(device)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate) # Adam optimizer
loss_fn = nn.CrossEntropyLoss()
t_total = len(train_dataloader) * num_epochs
warmup_step = int(t_total * warmup_ratio)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_step, num_training_steps=t_total)
def calc_accuracy(X,Y):
max_vals, max_indices = torch.max(X, 1)
train_acc = (max_indices == Y).sum().data.cpu().numpy()/max_indices.size()[0]
return train_acc
# training
for e in range(num_epochs):
train_acc = 0.0
test_acc = 0.0
model.train()
for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(notebook.tqdm(train_dataloader)):
optimizer.zero_grad()
token_ids = token_ids.long().to(device)
segment_ids = segment_ids.long().to(device)
valid_length= valid_length
label = label.long().to(device)
out = model(token_ids, valid_length, segment_ids)
loss = loss_fn(out, label)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
train_acc += calc_accuracy(out, label)
if batch_id % log_interval == 0:
print("epoch {} batch id {} loss {} train acc {}".format(e+1, batch_id+1, loss.data.cpu().numpy(), train_acc / (batch_id+1)))
print("epoch {} train acc {}".format(e+1, train_acc / (batch_id+1)))
model.eval()
for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(notebook.tqdm(test_dataloader)):
token_ids = token_ids.long().to(device)
segment_ids = segment_ids.long().to(device)
valid_length= valid_length
label = label.long().to(device)
out = model(token_ids, valid_length, segment_ids)
test_acc += calc_accuracy(out, label)
print("epoch {} validation acc {}".format(e+1, test_acc / (batch_id+1)))
# test
new_test = nlp.data.TSVDataset('test.tsv', field_indices=[1,2], num_discard_samples=1)
test_set = BERTDataset(new_test , 0, 1, tok, max_len, True, False)
test_input = torch.utils.data.DataLoader(test_set, batch_size=1, num_workers=4)
for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(tqdm_notebook(test_input)):
token_ids = token_ids.long().to(device)
segment_ids = segment_ids.long().to(device)
valid_length= valid_length
out = model(token_ids, valid_length, segment_ids)
prediction = out.cpu().detach().numpy().argmax()
print(batch_id + "번째 문장 분류 예측값: " + prediction)