comments | difficulty | edit_url | tags | |
---|---|---|---|---|
true |
Hard |
|
Given a positive integer n
, return the number of the integers in the range [0, n]
whose binary representations do not contain consecutive ones.
Example 1:
Input: n = 5 Output: 5 Explanation: Here are the non-negative integers <= 5 with their corresponding binary representations: 0 : 0 1 : 1 2 : 10 3 : 11 4 : 100 5 : 101 Among them, only integer 3 disobeys the rule (two consecutive ones) and the other 5 satisfy the rule.
Example 2:
Input: n = 1 Output: 2
Example 3:
Input: n = 2 Output: 3
Constraints:
1 <= n <= 109
This problem essentially asks for the number of numbers in the given range
For the range
However, for this problem, we only need to find the value for the range
Here, we use memoized search to implement Digit DP. The basic steps are as follows:
First, we get the binary length of the number
- The digit
$i$ represents the current position being searched, starting from the highest digit, i.e., the first character of the binary string. - The digit
$\textit{pre}$ represents the digit at the previous binary position. For this problem, the initial value of$\textit{pre}$ is$0$ . - The boolean
$\textit{limit}$ indicates whether the digits that can be filled are restricted. If there is no restriction, then we can choose$[0,1]$ . Otherwise, we can only choose$[0, \textit{up}]$ .
The function executes as follows:
If
- If both
$\textit{pre}$ and$j$ are$1$ , it means there are consecutive$1$ , so we skip it. - Otherwise, we recurse to the next level, update
$\textit{pre}$ to$j$ , and update$\textit{limit}$ to the logical AND of$\textit{limit}$ and whether$j$ equals$\textit{up}$ .
Finally, we sum all the results from the recursive calls to the next level, which is the answer.
The time complexity is
Similar problems:
- 233. Number of Digit One
- 357. Count Numbers with Unique Digits
- 788. Rotated Digits
- 902. Numbers At Most N Given Digit Set
- 1012. Numbers With Repeated Digits
- 2376. Count Special Integers
class Solution:
def findIntegers(self, n: int) -> int:
@cache
def dfs(i: int, pre: int, limit: bool) -> int:
if i < 0:
return 1
up = (n >> i & 1) if limit else 1
ans = 0
for j in range(up + 1):
if pre and j:
continue
ans += dfs(i - 1, j, limit and j == up)
return ans
return dfs(n.bit_length() - 1, 0, True)
class Solution {
private int n;
private Integer[][] f;
public int findIntegers(int n) {
this.n = n;
int m = Integer.SIZE - Integer.numberOfLeadingZeros(n);
f = new Integer[m][2];
return dfs(m - 1, 0, true);
}
private int dfs(int i, int pre, boolean limit) {
if (i < 0) {
return 1;
}
if (!limit && f[i][pre] != null) {
return f[i][pre];
}
int up = limit ? (n >> i & 1) : 1;
int ans = 0;
for (int j = 0; j <= up; ++j) {
if (j == 1 && pre == 1) {
continue;
}
ans += dfs(i - 1, j, limit && j == up);
}
if (!limit) {
f[i][pre] = ans;
}
return ans;
}
}
class Solution {
public:
int findIntegers(int n) {
int m = 32 - __builtin_clz(n);
int f[m][2];
memset(f, -1, sizeof(f));
auto dfs = [&](this auto&& dfs, int i, int pre, bool limit) -> int {
if (i < 0) {
return 1;
}
if (!limit && f[i][pre] != -1) {
return f[i][pre];
}
int up = limit ? (n >> i & 1) : 1;
int ans = 0;
for (int j = 0; j <= up; ++j) {
if (j && pre) {
continue;
}
ans += dfs(i - 1, j, limit && j == up);
}
if (!limit) {
f[i][pre] = ans;
}
return ans;
};
return dfs(m - 1, 0, true);
}
};
func findIntegers(n int) int {
m := bits.Len(uint(n))
f := make([][2]int, m)
for i := range f {
f[i] = [2]int{-1, -1}
}
var dfs func(i, pre int, limit bool) int
dfs = func(i, pre int, limit bool) int {
if i < 0 {
return 1
}
if !limit && f[i][pre] != -1 {
return f[i][pre]
}
up := 1
if limit {
up = n >> i & 1
}
ans := 0
for j := 0; j <= up; j++ {
if j == 1 && pre == 1 {
continue
}
ans += dfs(i-1, j, limit && j == up)
}
if !limit {
f[i][pre] = ans
}
return ans
}
return dfs(m-1, 0, true)
}
function findIntegers(n: number): number {
const m = n.toString(2).length;
const f: number[][] = Array.from({ length: m }, () => Array(2).fill(-1));
const dfs = (i: number, pre: number, limit: boolean): number => {
if (i < 0) {
return 1;
}
if (!limit && f[i][pre] !== -1) {
return f[i][pre];
}
const up = limit ? (n >> i) & 1 : 1;
let ans = 0;
for (let j = 0; j <= up; ++j) {
if (pre === 1 && j === 1) {
continue;
}
ans += dfs(i - 1, j, limit && j === up);
}
if (!limit) {
f[i][pre] = ans;
}
return ans;
};
return dfs(m - 1, 0, true);
}