forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov8.py
432 lines (368 loc) · 18.8 KB
/
yolov8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from tinygrad.nn import Conv2d, BatchNorm2d
from tinygrad.tensor import Tensor
import numpy as np
from itertools import chain
from pathlib import Path
import cv2
from collections import defaultdict
import time, sys
from tinygrad.helpers import fetch
from tinygrad.nn.state import safe_load, load_state_dict
#Model architecture from https://github.com/ultralytics/ultralytics/issues/189
#The upsampling class has been taken from this pull request https://github.com/tinygrad/tinygrad/pull/784 by dc-dc-dc. Now 2(?) models use upsampling. (retinet and this)
#Pre processing image functions.
def compute_transform(image, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32):
shape = image.shape[:2] # current shape [height, width]
new_shape = (new_shape, new_shape) if isinstance(new_shape, int) else new_shape
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
r = min(r, 1.0) if not scaleup else r
new_unpad = (int(round(shape[1] * r)), int(round(shape[0] * r)))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
dw, dh = (np.mod(dw, stride), np.mod(dh, stride)) if auto else (0.0, 0.0)
new_unpad = (new_shape[1], new_shape[0]) if scaleFill else new_unpad
dw /= 2
dh /= 2
image = cv2.resize(image, new_unpad, interpolation=cv2.INTER_LINEAR) if shape[::-1] != new_unpad else image
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
return image
def preprocess(im, imgsz=640, model_stride=32, model_pt=True):
same_shapes = all(x.shape == im[0].shape for x in im)
auto = same_shapes and model_pt
im = Tensor([compute_transform(x, new_shape=imgsz, auto=auto, stride=model_stride) for x in im])
im = Tensor.stack(im) if im.shape[0] > 1 else im
im = im[..., ::-1].permute(0, 3, 1, 2) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
im /= 255 # 0 - 255 to 0.0 - 1.0
return im
# Post Processing functions
def box_area(box):
return (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1])
def box_iou(box1, box2):
lt = np.maximum(box1[:, None, :2], box2[:, :2])
rb = np.minimum(box1[:, None, 2:], box2[:, 2:])
wh = np.clip(rb - lt, 0, None)
inter = wh[:, :, 0] * wh[:, :, 1]
area1 = box_area(box1)[:, None]
area2 = box_area(box2)[None, :]
iou = inter / (area1 + area2 - inter)
return iou
def compute_nms(boxes, scores, iou_threshold):
order, keep = scores.argsort()[::-1], []
while order.size > 0:
i = order[0]
keep.append(i)
if order.size == 1:
break
iou = box_iou(boxes[i][None, :], boxes[order[1:]])
inds = np.where(iou.squeeze() <= iou_threshold)[0]
order = order[inds + 1]
return np.array(keep)
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, agnostic=False, max_det=300, nc=0, max_wh=7680):
prediction = prediction[0] if isinstance(prediction, (list, tuple)) else prediction
bs, nc = prediction.shape[0], nc or (prediction.shape[1] - 4)
xc = np.amax(prediction[:, 4:4 + nc], axis=1) > conf_thres
nm = prediction.shape[1] - nc - 4
output = [np.zeros((0, 6 + nm))] * bs
for xi, x in enumerate(prediction):
x = x.swapaxes(0, -1)[xc[xi]]
if not x.shape[0]: continue
box, cls, mask = np.split(x, [4, 4 + nc], axis=1)
conf, j = np.max(cls, axis=1, keepdims=True), np.argmax(cls, axis=1, keepdims=True)
x = np.concatenate((xywh2xyxy(box), conf, j.astype(np.float32), mask), axis=1)
x = x[conf.ravel() > conf_thres]
if not x.shape[0]: continue
x = x[np.argsort(-x[:, 4])]
c = x[:, 5:6] * (0 if agnostic else max_wh)
boxes, scores = x[:, :4] + c, x[:, 4]
i = compute_nms(boxes, scores, iou_thres)[:max_det]
output[xi] = x[i]
return output
def postprocess(preds, img, orig_imgs):
print('copying to CPU now for post processing')
#if you are on CPU, this causes an overflow runtime error. doesn't "seem" to make any difference in the predictions though.
# TODO: make non_max_suppression in tinygrad - to make this faster
preds = preds.numpy() if isinstance(preds, Tensor) else preds
preds = non_max_suppression(prediction=preds, conf_thres=0.25, iou_thres=0.7, agnostic=False, max_det=300)
all_preds = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
if not isinstance(orig_imgs, Tensor):
pred[:, :4] = scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
all_preds.append(pred)
return all_preds
def draw_bounding_boxes_and_save(orig_img_paths, output_img_paths, all_predictions, class_labels, iou_threshold=0.5):
color_dict = {label: tuple((((i+1) * 50) % 256, ((i+1) * 100) % 256, ((i+1) * 150) % 256)) for i, label in enumerate(class_labels)}
font = cv2.FONT_HERSHEY_SIMPLEX
def is_bright_color(color):
r, g, b = color
brightness = (r * 299 + g * 587 + b * 114) / 1000
return brightness > 127
for img_idx, (orig_img_path, output_img_path, predictions) in enumerate(zip(orig_img_paths, output_img_paths, all_predictions)):
predictions = np.array(predictions)
orig_img = cv2.imread(orig_img_path) if not isinstance(orig_img_path, np.ndarray) else cv2.imdecode(orig_img_path, 1)
height, width, _ = orig_img.shape
box_thickness = int((height + width) / 400)
font_scale = (height + width) / 2500
grouped_preds = defaultdict(list)
object_count = defaultdict(int)
for pred_np in predictions:
grouped_preds[int(pred_np[-1])].append(pred_np)
def draw_box_and_label(pred, color):
x1, y1, x2, y2, conf, _ = pred
x1, y1, x2, y2 = map(int, (x1, y1, x2, y2))
cv2.rectangle(orig_img, (x1, y1), (x2, y2), color, box_thickness)
label = f"{class_labels[class_id]} {conf:.2f}"
text_size, _ = cv2.getTextSize(label, font, font_scale, 1)
label_y, bg_y = (y1 - 4, y1 - text_size[1] - 4) if y1 - text_size[1] - 4 > 0 else (y1 + text_size[1], y1)
cv2.rectangle(orig_img, (x1, bg_y), (x1 + text_size[0], bg_y + text_size[1]), color, -1)
font_color = (0, 0, 0) if is_bright_color(color) else (255, 255, 255)
cv2.putText(orig_img, label, (x1, label_y), font, font_scale, font_color, 1, cv2.LINE_AA)
for class_id, pred_list in grouped_preds.items():
pred_list = np.array(pred_list)
while len(pred_list) > 0:
max_conf_idx = np.argmax(pred_list[:, 4])
max_conf_pred = pred_list[max_conf_idx]
pred_list = np.delete(pred_list, max_conf_idx, axis=0)
color = color_dict[class_labels[class_id]]
draw_box_and_label(max_conf_pred, color)
object_count[class_labels[class_id]] += 1
iou_scores = box_iou(np.array([max_conf_pred[:4]]), pred_list[:, :4])
low_iou_indices = np.where(iou_scores[0] < iou_threshold)[0]
pred_list = pred_list[low_iou_indices]
for low_conf_pred in pred_list:
draw_box_and_label(low_conf_pred, color)
print(f"Image {img_idx + 1}:")
print("Objects detected:")
for obj, count in object_count.items():
print(f"- {obj}: {count}")
cv2.imwrite(output_img_path, orig_img)
print(f'saved detections at {output_img_path}')
# utility functions for forward pass.
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
lt, rb = distance.chunk(2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
if xywh:
c_xy = (x1y1 + x2y2) / 2
wh = x2y2 - x1y1
return c_xy.cat(wh, dim=1)
return x1y1.cat(x2y2, dim=1)
def make_anchors(feats, strides, grid_cell_offset=0.5):
anchor_points, stride_tensor = [], []
assert feats is not None
for i, stride in enumerate(strides):
_, _, h, w = feats[i].shape
sx = Tensor.arange(w) + grid_cell_offset
sy = Tensor.arange(h) + grid_cell_offset
# this is np.meshgrid but in tinygrad
sx = sx.reshape(1, -1).repeat([h, 1]).reshape(-1)
sy = sy.reshape(-1, 1).repeat([1, w]).reshape(-1)
anchor_points.append(Tensor.stack((sx, sy), -1).reshape(-1, 2))
stride_tensor.append(Tensor.full((h * w), stride))
anchor_points = anchor_points[0].cat(anchor_points[1], anchor_points[2])
stride_tensor = stride_tensor[0].cat(stride_tensor[1], stride_tensor[2]).unsqueeze(1)
return anchor_points, stride_tensor
# this function is from the original implementation
def autopad(k, p=None, d=1): # kernel, padding, dilation
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
def clip_boxes(boxes, shape):
boxes[..., [0, 2]] = np.clip(boxes[..., [0, 2]], 0, shape[1]) # x1, x2
boxes[..., [1, 3]] = np.clip(boxes[..., [1, 3]], 0, shape[0]) # y1, y2
return boxes
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
gain = ratio_pad if ratio_pad else min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])
pad = ((img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2)
boxes_np = boxes.numpy() if isinstance(boxes, Tensor) else boxes
boxes_np[..., [0, 2]] -= pad[0]
boxes_np[..., [1, 3]] -= pad[1]
boxes_np[..., :4] /= gain
boxes_np = clip_boxes(boxes_np, img0_shape)
return boxes_np
def xywh2xyxy(x):
xy = x[..., :2] # center x, y
wh = x[..., 2:4] # width, height
xy1 = xy - wh / 2 # top left x, y
xy2 = xy + wh / 2 # bottom right x, y
result = np.concatenate((xy1, xy2), axis=-1)
return Tensor(result) if isinstance(x, Tensor) else result
def get_variant_multiples(variant):
return {'n':(0.33, 0.25, 2.0), 's':(0.33, 0.50, 2.0), 'm':(0.67, 0.75, 1.5), 'l':(1.0, 1.0, 1.0), 'x':(1, 1.25, 1.0) }.get(variant, None)
def label_predictions(all_predictions):
class_index_count = defaultdict(int)
for predictions in all_predictions:
predictions = np.array(predictions)
for pred_np in predictions:
class_id = int(pred_np[-1])
class_index_count[class_id] += 1
return dict(class_index_count)
#this is taken from https://github.com/tinygrad/tinygrad/pull/784/files by dc-dc-dc (Now 2 models use upsampling)
class Upsample:
def __init__(self, scale_factor:int, mode: str = "nearest") -> None:
assert mode == "nearest" # only mode supported for now
self.mode = mode
self.scale_factor = scale_factor
def __call__(self, x: Tensor) -> Tensor:
assert len(x.shape) > 2 and len(x.shape) <= 5
(b, c), _lens = x.shape[:2], len(x.shape[2:])
tmp = x.reshape([b, c, -1] + [1] * _lens) * Tensor.ones(*[1, 1, 1] + [self.scale_factor] * _lens)
return tmp.reshape(list(x.shape) + [self.scale_factor] * _lens).permute([0, 1] + list(chain.from_iterable([[y+2, y+2+_lens] for y in range(_lens)]))).reshape([b, c] + [x * self.scale_factor for x in x.shape[2:]])
class Conv_Block:
def __init__(self, c1, c2, kernel_size=1, stride=1, groups=1, dilation=1, padding=None):
self.conv = Conv2d(c1,c2, kernel_size, stride, padding=autopad(kernel_size, padding, dilation), bias=False, groups=groups, dilation=dilation)
self.bn = BatchNorm2d(c2, eps=0.001)
def __call__(self, x):
return self.bn(self.conv(x)).silu()
class Bottleneck:
def __init__(self, c1, c2 , shortcut: bool, g=1, kernels: list = (3,3), channel_factor=0.5):
c_ = int(c2 * channel_factor)
self.cv1 = Conv_Block(c1, c_, kernel_size=kernels[0], stride=1, padding=None)
self.cv2 = Conv_Block(c_, c2, kernel_size=kernels[1], stride=1, padding=None, groups=g)
self.residual = c1 == c2 and shortcut
def __call__(self, x):
return x + self.cv2(self.cv1(x)) if self.residual else self.cv2(self.cv1(x))
class C2f:
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
self.c = int(c2 * e)
self.cv1 = Conv_Block(c1, 2 * self.c, 1,)
self.cv2 = Conv_Block((2 + n) * self.c, c2, 1)
self.bottleneck = [Bottleneck(self.c, self.c, shortcut, g, kernels=[(3, 3), (3, 3)], channel_factor=1.0) for _ in range(n)]
def __call__(self, x):
y= list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.bottleneck)
z = y[0]
for i in y[1:]: z = z.cat(i, dim=1)
return self.cv2(z)
class SPPF:
def __init__(self, c1, c2, k=5):
c_ = c1 // 2 # hidden channels
self.cv1 = Conv_Block(c1, c_, 1, 1, padding=None)
self.cv2 = Conv_Block(c_ * 4, c2, 1, 1, padding=None)
# TODO: this pads with 0s, whereas torch function pads with -infinity. This results in a < 2% difference in prediction which does not make a difference visually.
self.maxpool = lambda x : x.pad2d((k // 2, k // 2, k // 2, k // 2)).max_pool2d(kernel_size=k, stride=1)
def __call__(self, x):
x = self.cv1(x)
x2 = self.maxpool(x)
x3 = self.maxpool(x2)
x4 = self.maxpool(x3)
return self.cv2(x.cat(x2, x3, x4, dim=1))
class DFL:
def __init__(self, c1=16):
self.conv = Conv2d(c1, 1, 1, bias=False)
x = Tensor.arange(c1)
self.conv.weight.replace(x.reshape(1, c1, 1, 1))
self.c1 = c1
def __call__(self, x):
b, c, a = x.shape # batch, channels, anchors
return self.conv(x.reshape(b, 4, self.c1, a).transpose(2, 1).softmax(1)).reshape(b, 4, a)
#backbone
class Darknet:
def __init__(self, w, r, d):
self.b1 = [Conv_Block(c1=3, c2= int(64*w), kernel_size=3, stride=2, padding=1), Conv_Block(int(64*w), int(128*w), kernel_size=3, stride=2, padding=1)]
self.b2 = [C2f(c1=int(128*w), c2=int(128*w), n=round(3*d), shortcut=True), Conv_Block(int(128*w), int(256*w), 3, 2, 1), C2f(int(256*w), int(256*w), round(6*d), True)]
self.b3 = [Conv_Block(int(256*w), int(512*w), kernel_size=3, stride=2, padding=1), C2f(int(512*w), int(512*w), round(6*d), True)]
self.b4 = [Conv_Block(int(512*w), int(512*w*r), kernel_size=3, stride=2, padding=1), C2f(int(512*w*r), int(512*w*r), round(3*d), True)]
self.b5 = [SPPF(int(512*w*r), int(512*w*r), 5)]
def return_modules(self):
return [*self.b1, *self.b2, *self.b3, *self.b4, *self.b5]
def __call__(self, x):
x1 = x.sequential(self.b1)
x2 = x1.sequential(self.b2)
x3 = x2.sequential(self.b3)
x4 = x3.sequential(self.b4)
x5 = x4.sequential(self.b5)
return (x2, x3, x5)
#yolo fpn (neck)
class Yolov8NECK:
def __init__(self, w, r, d): #width_multiple, ratio_multiple, depth_multiple
self.up = Upsample(2, mode='nearest')
self.n1 = C2f(c1=int(512*w*(1+r)), c2=int(512*w), n=round(3*d), shortcut=False)
self.n2 = C2f(c1=int(768*w), c2=int(256*w), n=round(3*d), shortcut=False)
self.n3 = Conv_Block(c1=int(256*w), c2=int(256*w), kernel_size=3, stride=2, padding=1)
self.n4 = C2f(c1=int(768*w), c2=int(512*w), n=round(3*d), shortcut=False)
self.n5 = Conv_Block(c1=int(512* w), c2=int(512 * w), kernel_size=3, stride=2, padding=1)
self.n6 = C2f(c1=int(512*w*(1+r)), c2=int(512*w*r), n=round(3*d), shortcut=False)
def return_modules(self):
return [self.n1, self.n2, self.n3, self.n4, self.n5, self.n6]
def __call__(self, p3, p4, p5):
x = self.n1(self.up(p5).cat(p4, dim=1))
head_1 = self.n2(self.up(x).cat(p3, dim=1))
head_2 = self.n4(self.n3(head_1).cat(x, dim=1))
head_3 = self.n6(self.n5(head_2).cat(p5, dim=1))
return [head_1, head_2, head_3]
#task specific head.
class DetectionHead:
def __init__(self, nc=80, filters=()):
self.ch = 16
self.nc = nc # number of classes
self.nl = len(filters)
self.no = nc + self.ch * 4 #
self.stride = [8, 16, 32]
c1 = max(filters[0], self.nc)
c2 = max((filters[0] // 4, self.ch * 4))
self.dfl = DFL(self.ch)
self.cv3 = [[Conv_Block(x, c1, 3), Conv_Block(c1, c1, 3), Conv2d(c1, self.nc, 1)] for x in filters]
self.cv2 = [[Conv_Block(x, c2, 3), Conv_Block(c2, c2, 3), Conv2d(c2, 4 * self.ch, 1)] for x in filters]
def __call__(self, x):
for i in range(self.nl):
x[i] = (x[i].sequential(self.cv2[i]).cat(x[i].sequential(self.cv3[i]), dim=1))
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
y = [(i.reshape(x[0].shape[0], self.no, -1)) for i in x]
x_cat = y[0].cat(y[1], y[2], dim=2)
box, cls = x_cat[:, :self.ch * 4], x_cat[:, self.ch * 4:]
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
z = dbox.cat(cls.sigmoid(), dim=1)
return z
class YOLOv8:
def __init__(self, w, r, d, num_classes): #width_multiple, ratio_multiple, depth_multiple
self.net = Darknet(w, r, d)
self.fpn = Yolov8NECK(w, r, d)
self.head = DetectionHead(num_classes, filters=(int(256*w), int(512*w), int(512*w*r)))
def __call__(self, x):
x = self.net(x)
x = self.fpn(*x)
return self.head(x)
def return_all_trainable_modules(self):
backbone_modules = [*range(10)]
yolov8neck_modules = [12, 15, 16, 18, 19, 21]
yolov8_head_weights = [(22, self.head)]
return [*zip(backbone_modules, self.net.return_modules()), *zip(yolov8neck_modules, self.fpn.return_modules()), *yolov8_head_weights]
if __name__ == '__main__':
# usage : python3 yolov8.py "image_URL OR image_path" "v8 variant" (optional, n is default)
if len(sys.argv) < 2:
print("Error: Image URL or path not provided.")
sys.exit(1)
img_path = sys.argv[1]
yolo_variant = sys.argv[2] if len(sys.argv) >= 3 else (print("No variant given, so choosing 'n' as the default. Yolov8 has different variants, you can choose from ['n', 's', 'm', 'l', 'x']") or 'n')
print(f'running inference for YOLO version {yolo_variant}')
output_folder_path = Path('./outputs_yolov8')
output_folder_path.mkdir(parents=True, exist_ok=True)
#absolute image path or URL
image_location = [np.frombuffer(fetch(img_path).read_bytes(), np.uint8)]
image = [cv2.imdecode(image_location[0], 1)]
out_paths = [(output_folder_path / f"{Path(img_path).stem}_output{Path(img_path).suffix or '.png'}").as_posix()]
if not isinstance(image[0], np.ndarray):
print('Error in image loading. Check your image file.')
sys.exit(1)
pre_processed_image = preprocess(image)
# Different YOLOv8 variants use different w , r, and d multiples. For a list , refer to this yaml file (the scales section) https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/v8/yolov8.yaml
depth, width, ratio = get_variant_multiples(yolo_variant)
yolo_infer = YOLOv8(w=width, r=ratio, d=depth, num_classes=80)
state_dict = safe_load(fetch(f'https://gitlab.com/r3sist/yolov8_weights/-/raw/master/yolov8{yolo_variant}.safetensors'))
load_state_dict(yolo_infer, state_dict)
st = time.time()
predictions = yolo_infer(pre_processed_image)
print(f'did inference in {int(round(((time.time() - st) * 1000)))}ms')
post_predictions = postprocess(preds=predictions, img=pre_processed_image, orig_imgs=image)
#v8 and v3 have same 80 class names for Object Detection
class_labels = fetch('https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names').read_text().split("\n")
draw_bounding_boxes_and_save(orig_img_paths=image_location, output_img_paths=out_paths, all_predictions=post_predictions, class_labels=class_labels)
# TODO for later:
# 1. Fix SPPF minor difference due to maxpool
# 2. AST exp overflow warning while on cpu
# 3. Make NMS faster
# 4. Add video inference and webcam support