-
Notifications
You must be signed in to change notification settings - Fork 0
/
gender_prediction_knn_crossdb.py
217 lines (106 loc) · 4.69 KB
/
gender_prediction_knn_crossdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from itertools import count
import numpy as np
import sys
from numpy.lib.twodim_base import tri
import matplotlib.pyplot as plt
import argparse
import os
import math
import csv
from pathlib import Path
import random
import math
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
def configure_svm(kernel):
model = svm.SVC(100, random_state=42, kernel=kernel)
return model
def train(data, labels, model):
model_trained = model.fit(data, labels)
return model_trained
def predict(data, model):
list_prediction = []
for feat in data:
feat = feat.reshape([1, -1]) if(len(feat.shape) == 1) else feat
score = model.predict(feat)
list_prediction.append(score)
return list_prediction
parser = argparse.ArgumentParser(description='Gender Prediction with KNN using cross-database',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--female', '-f',
type=str,
help='input of the features corresponding to the female group')
parser.add_argument('--male', '-m',
type=str,
help='input of the features corresponding to the male group')
parser.add_argument('--train', '-t',
type=str,
help='input of the features corresponding to the train group')
parser.add_argument('--testing', '-p',
type=str,
help='input of the features corresponding to the test group')
parser.add_argument('--database', '-cdb',
type=str,
help='input to the dir where are the features')
parser.add_argument('--iter', '-i',
type=int,
help='number of iterations')
parser.add_argument('--output', '-o',
type=str,
help='output')
args = parser.parse_args()
face_list_f = list(Path(args.female).rglob('*.npy'))
face_list_m = list(Path(args.male).rglob('*.npy'))
scaler = StandardScaler()
total_testing_crossdb = []
path_f = os.path.join(args.database, 'female')
path_m = os.path.join(args.database, 'male')
test_db_cross_f = list(Path(path_f).rglob('*.npy'))
feat_test_f = np.asarray([np.load(h) for h in test_db_cross_f])
test_db_cross_m = list(Path(path_m).rglob('*.npy'))
feat_test_m = np.asarray([np.load(h) for h in test_db_cross_m])
total_good_f = 0
total_good_m = 0
total_error_f = 0
total_error_m = 0
total_correct = 0
total_error = 0
fpath_csv_th = os.path.join(args.output, "training_{}_testing_{}_knn_shuffle.csv".format(args.train,args.testing))
with open(fpath_csv_th, 'w', newline='') as f:
fieldnames = ['Train','Test', 'Females_correct', 'Females_error','Males_correct', 'Males_error', 'Total_correct', 'Total_error']
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
path_face_list_f = list(Path(args.female).rglob('*.npy'))
path_face_list_m = list(Path(args.male).rglob('*.npy'))
face_list_f = np.asarray([np.load(h) for h in path_face_list_f])
face_list_f = scaler.fit_transform(face_list_f)
face_list_m = np.asarray([np.load(h) for h in path_face_list_m])
face_list_m = scaler.fit_transform(face_list_m)
feat_test_f = scaler.transform(feat_test_f)
feat_test_m = scaler.transform(feat_test_m)
labels_f = ['f']*len(path_face_list_f)
labels_m = ['m']*len(path_face_list_m)
total_train = np.concatenate((face_list_f,face_list_m),axis=0)
total_train_label = np.concatenate((labels_f,labels_m),axis=None)
train_tmp = list(zip(total_train, total_train_label))
random.shuffle(train_tmp)
total_train, total_train_label = zip(*train_tmp)
model = KNeighborsClassifier(n_neighbors=3)
model_trained = model.fit(total_train,total_train_label)
prediction_m = model_trained.predict(feat_test_m)
prediction_f = model_trained.predict(feat_test_f)
good_males = 0
for m in prediction_m:
if m[0] == 'm':
good_males+= 1
percent_good_males = (good_males * 100) / len(test_db_cross_m)
error_males = 100 - percent_good_males
good_females = 0
for f in prediction_f:
if f[0] == 'f':
good_females+= 1
percent_good_females = (good_females * 100) / len(test_db_cross_f)
error_females = 100 - percent_good_females
total_correct = (percent_good_females + percent_good_males) / 2
writer.writerow({'Train': args.train, 'Test': args.testing,'Females_correct': percent_good_females , 'Males_correct': percent_good_males, 'Total_correct' : total_correct })