Skip to content

Commit e877bf8

Browse files
authored
fix: Docs Authoring Markdownlint rules (#20652)
* fix: Mallformed nameWithType refs * fix: Escape asterisks in xref * fix: Escape the backtick character in xref links
1 parent 1acf542 commit e877bf8

18 files changed

+59
-59
lines changed

docs/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -59,9 +59,9 @@ The following diagram shows how Typed Clients are used with `IHttpClientFactory`
5959

6060
**Figure 8-4**. Using `IHttpClientFactory` with Typed Client classes.
6161

62-
In the above image, a `ClientService` (used by a controller or client code) uses an `HttpClient` created by the registered `IHttpClientFactory`. This factory assigns an `HttpMessageHandler` from a pool to the `HttpClient`. The `HttpClient` can be configured with Polly's policies when registering the `IHttpClientFactory` in the DI container with the extension method <xref:Microsoft.Extensions.DependencyInjection.HttpClientFactoryServiceCollectionExtensions.AddHttpClient*>.
62+
In the above image, a `ClientService` (used by a controller or client code) uses an `HttpClient` created by the registered `IHttpClientFactory`. This factory assigns an `HttpMessageHandler` from a pool to the `HttpClient`. The `HttpClient` can be configured with Polly's policies when registering the `IHttpClientFactory` in the DI container with the extension method <xref:Microsoft.Extensions.DependencyInjection.HttpClientFactoryServiceCollectionExtensions.AddHttpClient%2A>.
6363

64-
To configure the above structure, add <xref:System.Net.Http.IHttpClientFactory> in your application by installing the `Microsoft.Extensions.Http` NuGet package that includes the <xref:Microsoft.Extensions.DependencyInjection.HttpClientFactoryServiceCollectionExtensions.AddHttpClient*> extension method for <xref:Microsoft.Extensions.DependencyInjection.IServiceCollection>. This extension method registers the internal `DefaultHttpClientFactory` class to be used as a singleton for the interface `IHttpClientFactory`. It defines a transient configuration for the <xref:Microsoft.Extensions.Http.HttpMessageHandlerBuilder>. This message handler (<xref:System.Net.Http.HttpMessageHandler> object), taken from a pool, is used by the `HttpClient` returned from the factory.
64+
To configure the above structure, add <xref:System.Net.Http.IHttpClientFactory> in your application by installing the `Microsoft.Extensions.Http` NuGet package that includes the <xref:Microsoft.Extensions.DependencyInjection.HttpClientFactoryServiceCollectionExtensions.AddHttpClient%2A> extension method for <xref:Microsoft.Extensions.DependencyInjection.IServiceCollection>. This extension method registers the internal `DefaultHttpClientFactory` class to be used as a singleton for the interface `IHttpClientFactory`. It defines a transient configuration for the <xref:Microsoft.Extensions.Http.HttpMessageHandlerBuilder>. This message handler (<xref:System.Net.Http.HttpMessageHandler> object), taken from a pool, is used by the `HttpClient` returned from the factory.
6565

6666
In the next code, you can see how `AddHttpClient()` can be used to register Typed Clients (Service Agents) that need to use `HttpClient`.
6767

docs/framework/whats-new/whats-new-in-accessibility.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -382,7 +382,7 @@ Starting with .NET Framework 4.7.2, the <xref:System.Windows.Forms.DataGridView>
382382

383383
**Changes to the CheckBox and RadioButton controls**
384384

385-
In .NET Framework 4.7.1 and earlier versions, the WPF <xref:System.Windows.Controls.CheckBox?displayProperty=nameWIthType> and <xref:System.Windows.Controls.RadioButton?displayProperty=nameWIthType> controls have inconsistent and, in Classic and High Contrast themes,
385+
In .NET Framework 4.7.1 and earlier versions, the WPF <xref:System.Windows.Controls.CheckBox?displayProperty=nameWithType> and <xref:System.Windows.Controls.RadioButton?displayProperty=nameWithType> controls have inconsistent and, in Classic and High Contrast themes,
386386
incorrect focus visuals. These issues occur in cases where the controls do not have any content set. This can make the transition between themes confusing and the focus visual hard to see.
387387

388388
In .NET Framework 4.7.2, these visuals are now more consistent across themes and more easily visible in Classic and High Contrast themes.

docs/machine-learning/how-does-mldotnet-work.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -258,7 +258,7 @@ All algorithms also create new columns after they have performed a prediction. T
258258

259259
You can find out more about output columns of different machine learning tasks in the [Machine Learning Tasks](resources/tasks.md) guide.
260260

261-
An important property of DataView objects is that they are evaluated **lazily**. Data views are only loaded and operated on during model training and evaluation, and data prediction. While you are writing and testing your ML.NET application, you can use the Visual Studio debugger to take a peek at any data view object by calling the [Preview](xref:Microsoft.ML.DebuggerExtensions.Preview*) method.
261+
An important property of DataView objects is that they are evaluated **lazily**. Data views are only loaded and operated on during model training and evaluation, and data prediction. While you are writing and testing your ML.NET application, you can use the Visual Studio debugger to take a peek at any data view object by calling the [Preview](xref:Microsoft.ML.DebuggerExtensions.Preview%2A) method.
262262

263263
```csharp
264264
var debug = testPriceDataView.Preview();

docs/machine-learning/how-to-choose-an-ml-net-algorithm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ Before training with a linear algorithm, the features should be normalized. This
2929

3030
In general linear algorithms are scalable and fast, cheap to train, cheap to predict. They scale by the number of features and approximately by the size of the training data set.
3131

32-
Linear algorithms make multiple passes over the training data. If your dataset fits into memory, then adding a [cache checkpoint](xref:Microsoft.ML.LearningPipelineExtensions.AppendCacheCheckpoint*) to your ML.NET pipeline before appending the trainer, will make the training run faster.
32+
Linear algorithms make multiple passes over the training data. If your dataset fits into memory, then adding a [cache checkpoint](xref:Microsoft.ML.LearningPipelineExtensions.AppendCacheCheckpoint%2A) to your ML.NET pipeline before appending the trainer, will make the training run faster.
3333

3434
**Linear Trainers**
3535

docs/machine-learning/how-to-guides/inspect-intermediate-data-ml-net.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ HousingData[] housingData = new HousingData[]
5858

5959
## Convert IDataView to IEnumerable
6060

61-
One of the quickest ways to inspect an [`IDataView`](xref:Microsoft.ML.IDataView) is to convert it to an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601). To convert an [`IDataView`](xref:Microsoft.ML.IDataView) to [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) use the [`CreateEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.CreateEnumerable*) method.
61+
One of the quickest ways to inspect an [`IDataView`](xref:Microsoft.ML.IDataView) is to convert it to an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601). To convert an [`IDataView`](xref:Microsoft.ML.IDataView) to [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) use the [`CreateEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.CreateEnumerable%2A) method.
6262

6363
To optimize performance, set `reuseRowObject` to `true`. Doing so will lazily populate the same object with the data of the current row as it's being evaluated as opposed to creating a new object for each row in the dataset.
6464

@@ -77,10 +77,10 @@ foreach (HousingData row in housingDataEnumerable)
7777

7878
## Accessing specific indices with IEnumerable
7979

80-
If you only need access to a portion of the data or specific indices, use [`CreateEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.CreateEnumerable*) and set the `reuseRowObject` parameter value to `false` so a new object is created for each of the requested rows in the dataset. Then, convert the [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) to an array or list.
80+
If you only need access to a portion of the data or specific indices, use [`CreateEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.CreateEnumerable%2A) and set the `reuseRowObject` parameter value to `false` so a new object is created for each of the requested rows in the dataset. Then, convert the [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) to an array or list.
8181

8282
> [!WARNING]
83-
> Converting the result of [`CreateEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.CreateEnumerable*) to an array or list will load all the requested [`IDataView`](xref:Microsoft.ML.IDataView) rows into memory which may affect performance.
83+
> Converting the result of [`CreateEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.CreateEnumerable%2A) to an array or list will load all the requested [`IDataView`](xref:Microsoft.ML.IDataView) rows into memory which may affect performance.
8484
8585
Once the collection has been created, you can perform operations on the data. The code snippet below takes the first three rows in the dataset and calculates the average current price.
8686

@@ -100,15 +100,15 @@ float averageCurrentPrice = (firstRow.CurrentPrice + secondRow.CurrentPrice + th
100100

101101
## Inspect values in a single column
102102

103-
At any point in the model building process, values in a single column of an [`IDataView`](xref:Microsoft.ML.IDataView) can be accessed using the [`GetColumn`](xref:Microsoft.ML.Data.ColumnCursorExtensions.GetColumn*) method. The [`GetColumn`](xref:Microsoft.ML.Data.ColumnCursorExtensions.GetColumn*) method returns all of the values in a single column as an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601).
103+
At any point in the model building process, values in a single column of an [`IDataView`](xref:Microsoft.ML.IDataView) can be accessed using the [`GetColumn`](xref:Microsoft.ML.Data.ColumnCursorExtensions.GetColumn%2A) method. The [`GetColumn`](xref:Microsoft.ML.Data.ColumnCursorExtensions.GetColumn%2A) method returns all of the values in a single column as an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601).
104104

105105
```csharp
106106
IEnumerable<float> sizeColumn = data.GetColumn<float>("Size").ToList();
107107
```
108108

109109
## Inspect IDataView values one row at a time
110110

111-
[`IDataView`](xref:Microsoft.ML.IDataView) is lazily evaluated. To iterate over the rows of an [`IDataView`](xref:Microsoft.ML.IDataView) without converting to an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) as demonstrated in previous sections of this document, create a [`DataViewRowCursor`](xref:Microsoft.ML.DataViewRowCursor) by using the [`GetRowCursor`](xref:Microsoft.ML.IDataView.GetRowCursor*) method and passing in the [DataViewSchema](xref:Microsoft.ML.DataViewSchema) of your [`IDataView`](xref:Microsoft.ML.IDataView) as a parameter. Then, to iterate over rows, use the [`MoveNext`](xref:Microsoft.ML.DataViewRowCursor.MoveNext*) cursor method along with [`ValueGetter`](xref:Microsoft.ML.ValueGetter%601) delegates to extract the respective values from each of the columns.
111+
[`IDataView`](xref:Microsoft.ML.IDataView) is lazily evaluated. To iterate over the rows of an [`IDataView`](xref:Microsoft.ML.IDataView) without converting to an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) as demonstrated in previous sections of this document, create a [`DataViewRowCursor`](xref:Microsoft.ML.DataViewRowCursor) by using the [`GetRowCursor`](xref:Microsoft.ML.IDataView.GetRowCursor%2A) method and passing in the [DataViewSchema](xref:Microsoft.ML.DataViewSchema) of your [`IDataView`](xref:Microsoft.ML.IDataView) as a parameter. Then, to iterate over rows, use the [`MoveNext`](xref:Microsoft.ML.DataViewRowCursor.MoveNext%2A) cursor method along with [`ValueGetter`](xref:Microsoft.ML.ValueGetter%601) delegates to extract the respective values from each of the columns.
112112

113113
> [!IMPORTANT]
114114
> For performance purposes, vectors in ML.NET use [`VBuffer`](xref:Microsoft.ML.Data.VBuffer%601) instead of native collection types (that is, `Vector`,`float[]`).
@@ -146,7 +146,7 @@ using (DataViewRowCursor cursor = data.GetRowCursor(columns))
146146
> [!WARNING]
147147
> Do not use `Preview` in production code because it is intended for debugging and may reduce performance.
148148
149-
The model building process is experimental and iterative. To preview what data would look like after pre-processing or training a machine learning model on a subset of the data, use the [`Preview`](xref:Microsoft.ML.DebuggerExtensions.Preview*) method which returns a [`DataDebuggerPreview`](xref:Microsoft.ML.Data.DataDebuggerPreview). The result is an object with `ColumnView` and `RowView` properties which are both an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) and contain the values in a particular column or row. Specify the number of rows to apply the transformation to with the `maxRows` parameter.
149+
The model building process is experimental and iterative. To preview what data would look like after pre-processing or training a machine learning model on a subset of the data, use the [`Preview`](xref:Microsoft.ML.DebuggerExtensions.Preview%2A) method which returns a [`DataDebuggerPreview`](xref:Microsoft.ML.Data.DataDebuggerPreview). The result is an object with `ColumnView` and `RowView` properties which are both an [`IEnumerable`](xref:System.Collections.Generic.IEnumerable%601) and contain the values in a particular column or row. Specify the number of rows to apply the transformation to with the `maxRows` parameter.
150150

151151
![Data Debugger Preview Object](./media/inspect-intermediate-data-ml-net/data-debugger-preview-01.png)
152152

docs/machine-learning/how-to-guides/load-data-ml-net.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ ML.NET Operates through column names. If you want to change the name of a column
6262

6363
## Load data from a single file
6464

65-
To load data from a file use the [`LoadFromTextFile`](xref:Microsoft.ML.TextLoaderSaverCatalog.LoadFromTextFile*) method along with the data model for the data to be loaded. Since `separatorChar` parameter is tab-delimited by default, change it for your data file as needed. If your file has a header, set the `hasHeader` parameter to `true` to ignore the first line in the file and begin to load data from the second line.
65+
To load data from a file use the [`LoadFromTextFile`](xref:Microsoft.ML.TextLoaderSaverCatalog.LoadFromTextFile%2A) method along with the data model for the data to be loaded. Since `separatorChar` parameter is tab-delimited by default, change it for your data file as needed. If your file has a header, set the `hasHeader` parameter to `true` to ignore the first line in the file and begin to load data from the second line.
6666

6767
```csharp
6868
//Create MLContext
@@ -78,7 +78,7 @@ In the event that your data is stored in multiple files, as long as the data sch
7878

7979
### Load from files in a single directory
8080

81-
When all of your data files are in the same directory, use wildcards in the [`LoadFromTextFile`](xref:Microsoft.ML.TextLoaderSaverCatalog.LoadFromTextFile*) method.
81+
When all of your data files are in the same directory, use wildcards in the [`LoadFromTextFile`](xref:Microsoft.ML.TextLoaderSaverCatalog.LoadFromTextFile%2A) method.
8282

8383
```csharp
8484
//Create MLContext
@@ -90,7 +90,7 @@ IDataView data = mlContext.Data.LoadFromTextFile<HousingData>("Data/*", separato
9090

9191
### Load from files in multiple directories
9292

93-
To load data from multiple directories, use the [`CreateTextLoader`](xref:Microsoft.ML.TextLoaderSaverCatalog.CreateTextLoader*) method to create a [`TextLoader`](xref:Microsoft.ML.Data.TextLoader). Then, use the [`TextLoader.Load`](xref:Microsoft.ML.DataLoaderExtensions.Load*) method and specify the individual file paths (wildcards can't be used).
93+
To load data from multiple directories, use the [`CreateTextLoader`](xref:Microsoft.ML.TextLoaderSaverCatalog.CreateTextLoader%2A) method to create a [`TextLoader`](xref:Microsoft.ML.Data.TextLoader). Then, use the [`TextLoader.Load`](xref:Microsoft.ML.DataLoaderExtensions.Load%2A) method and specify the individual file paths (wildcards can't be used).
9494

9595
```csharp
9696
//Create MLContext
@@ -196,10 +196,10 @@ HousingData[] inMemoryCollection = new HousingData[]
196196
};
197197
```
198198

199-
Load the in-memory collection into an [`IDataView`](xref:Microsoft.ML.IDataView) with the [`LoadFromEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.LoadFromEnumerable*) method:
199+
Load the in-memory collection into an [`IDataView`](xref:Microsoft.ML.IDataView) with the [`LoadFromEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.LoadFromEnumerable%2A) method:
200200

201201
> [!IMPORTANT]
202-
> [`LoadFromEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.LoadFromEnumerable*) assumes that the [`IEnumerable`](xref:System.Collections.IEnumerable) it loads from is thread-safe.
202+
> [`LoadFromEnumerable`](xref:Microsoft.ML.DataOperationsCatalog.LoadFromEnumerable%2A) assumes that the [`IEnumerable`](xref:System.Collections.IEnumerable) it loads from is thread-safe.
203203
204204
```csharp
205205
// Create MLContext

docs/machine-learning/how-to-guides/machine-learning-model-predictions-ml-net.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ To make a single prediction, create a [`PredictionEngine`](xref:Microsoft.ML.Pre
6868
PredictionEngine<HousingData, HousingPrediction> predictionEngine = mlContext.Model.CreatePredictionEngine<HousingData, HousingPrediction>(predictionPipeline);
6969
```
7070

71-
Then, use the [`Predict`](xref:Microsoft.ML.PredictionEngineBase%602.Predict*) method and pass in your input data as a parameter. Notice that using the [`Predict`](xref:Microsoft.ML.PredictionEngineBase%602.Predict*) method does not require the input to be an [`IDataView`](xref:Microsoft.ML.IDataView)). This is because it conveniently internalizes the input data type manipulation so you can pass in an object of the input data type. Additionally, since `CurrentPrice` is the target or label you're trying to predict using new data, it's assumed there is no value for it at the moment.
71+
Then, use the [`Predict`](xref:Microsoft.ML.PredictionEngineBase%602.Predict%2A) method and pass in your input data as a parameter. Notice that using the [`Predict`](xref:Microsoft.ML.PredictionEngineBase%602.Predict%2A) method does not require the input to be an [`IDataView`](xref:Microsoft.ML.IDataView)). This is because it conveniently internalizes the input data type manipulation so you can pass in an object of the input data type. Additionally, since `CurrentPrice` is the target or label you're trying to predict using new data, it's assumed there is no value for it at the moment.
7272

7373
```csharp
7474
// Input Data
@@ -110,14 +110,14 @@ HousingData[] housingData = new HousingData[]
110110
};
111111
```
112112

113-
Then, use the [`Transform`](xref:Microsoft.ML.ITransformer.Transform*) method to apply the data transformations and generate predictions.
113+
Then, use the [`Transform`](xref:Microsoft.ML.ITransformer.Transform%2A) method to apply the data transformations and generate predictions.
114114

115115
```csharp
116116
// Predicted Data
117117
IDataView predictions = predictionPipeline.Transform(inputData);
118118
```
119119

120-
Inspect the predicted values by using the [`GetColumn`](xref:Microsoft.ML.Data.ColumnCursorExtensions.GetColumn*) method.
120+
Inspect the predicted values by using the [`GetColumn`](xref:Microsoft.ML.Data.ColumnCursorExtensions.GetColumn%2A) method.
121121

122122
```csharp
123123
// Get Predictions

0 commit comments

Comments
 (0)