forked from flatironinstitute/CaImAn-MATLAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CNMFSetParms.m
410 lines (396 loc) · 17.5 KB
/
CNMFSetParms.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
function options = CNMFSetParms(varargin)
% Struct for setting the CNMF algorithm parameters. Any parameter that is
% not set gets a default value
% Author: Eftychios A. Pnevmatikakis
% Simons Foundation, 2015
Names = [
% dataset info
'd1 ' % number of rows
'd2 ' % number of cols
'd3 ' % number of planes (for 3d imaging, default: 1)
% INITIALIZATION (initialize_components.m)
'ssub ' % spatial downsampling factor (default: 1)
'tsub ' % temporal downsampling factor (default: 1)
'init_method ' % initialization method ('greedy','greedy_corr','sparse_NMF','HALS') (default: 'greedy')
'rem_prct ' % percentile to be removed before initialization (default: 20)
'noise_norm ' % normalization by noise estimate prior to initialization (default: true)
'noise_norm_prctile ' % minimum noise level (as percentile of P.sn) used in the normalization prior to initialization (default: 2)
% greedy_corr parameters (greedyROI_corr.m)
'min_corr ' % minimum local correlation for initializing a neuron (default: 0.3)
% greedyROI parameters (greedyROI.m)
'gSig ' % half size of neurons to be found (default: [5,5])
'gSiz ' % half size of bounding box for each neuron (default: 2*gSig+1)
'nb ' % number of background components (default: 1)
'nIter ' % maximum number of rank-1 NMF iterations during refining
'med_app ' % number of timesteps to be interleaved for fast (approximate) median calculation (default: 1)
'save_memory ' % process data sequentially to save memory (default: 0)
'chunkSiz ' % filter this number of timesteps each time (default: 100)
'windowSiz ' % size of window over which is computed sequentially (default: 32 x 32)
'rolling_sum ' % flag for using rolling sum to detect new components (default: True)
'rolling_length ' % length of rolling window (default: 100)
% sparse_NMF parameters (sparse_NMF_initialization.m)
'snmf_max_iter ' % max # of sparse NMF iterations
'err_thr ' % relative change threshold for stopping sparse_NMF
'eta ' % frobenious norm factor *max(Y(:))^2
'beta ' % sparsity factor
% HALS initialization parameters (HALS_initialization.m)
'max_iter_hals_in ' % maximum number of HALS iterations
% HALS parameters (HALS_2d.m)
'bSiz ' % expand kernel for HALS growing (default: 3)
'maxIter ' % maximum number of HALS iterations (default: 5)
% Noise and AR coefficients calculation (preprocess_data.m)
'noise_range ' % frequency range over which to estimate the noise (default: [0.25,0.5])
'noise_method ' % method for which to estimate the noise level (default: 'logmexp')
'max_timesteps ' % maximum number of timesteps over which to estimate noise (default: 3000)
'flag_g ' % compute global AR coefficients (default: false)
'lags ' % number of extra lags when computing the AR coefficients (default: 5)
'include_noise ' % include early lags when computing AR coefs (default: 0)
'pixels ' % pixels to include when computing the AR coefs (default: 1:numel(Y)/size(Y,ndims(Y)))
'split_data ' % split data into patches for memory reasons (default: 0)
'block_size ' % block size for estimating noise std in patches (default: [64,64])
'cluster_pixels ' % cluster pixels to active/inactive based on the PSD density (default: false)
'extract_max ' % extract the maximum activity intervals for each pixel (default: false)
'max_nlocs ' % number of local maxima to be extracted (default: 10)
'max_width ' % length of each interval (default: 11)
% UPDATING SPATIAL COMPONENTS (unpdate_spatial_components.m)
'spatial_method ' % method for updating spatial components 'constrained' or 'regularized' (default: 'regularized')
'search_method ' % method for determining footprint of spatial components 'ellipse' or 'dilate' (default: 'dilate')
'spatial_parallel ' % update pixels in parallel (default: 1 if present)
% determine_search_location.m
'min_size ' % minimum size of ellipse axis (default: 3)
'max_size ' % maximum size of ellipse axis (default: 8)
'dist ' % expansion factor of ellipse (default: 3)
'se ' % morphological element for dilation (default: strel('disk',1,0))
% threshold_components.m
'thr_method ' % method to threshold ('max' or 'nrg', default 'max')
'maxthr ' % threshold of max value below which values are discarded (default: 0.25)
'nrgthr ' % energy threshold (default: 0.995)
'clos_op ' % morphological element for closing (default: strel('square',3))
'medw ' % size of median filter (default: [3,3])
'conn_comp ' % extract largest connected component (binary, default: true)
% UPDATING TEMPORAL COMPONENTS (update_temporal_components.m)
'p ' % order of AR model dynamics (default: 1)
'deconv_method ' % method for spike deconvolution (default: 'constrained_foopsi')
'restimate_g ' % flag for updating the time constants for each component (default: 1)
'temporal_iter ' % number of block-coordinate descent iterations (default: 2)
'temporal_parallel ' % flag for parallel updating of temporal components (default: true if present)
'full_A ' % if true turn A into full matrix. If false turn Y into double precision (default: false)
% CONSTRAINED DECONVOLUTION (constrained_foopsi.m)
'method ' % methods for performing spike inference ('dual','cvx','spgl1','lars') (default:'cvx')
'bas_nonneg ' % flag for setting the baseline lower bound. if 1, then b >= 0 else b >= min(y) (default 1)
'fudge_factor ' % scaling constant to reduce bias in the time constant estimation (default 1 - no scaling)
'resparse ' % number of times that the solution is resparsened (default: 0)
% OASIS penalty parameters (deconvolveCa.m)
'lam_pr ' % false positive probability for determing lambda penalty
'spk_SNR ' % spike SNR for min spike value
% MERGING (merge_ROIs.m)
'merge_thr ' % merging threshold (default: 0.85)
'fast_merge ' % flag for using fast merging (default 1)
% DF/F (extract_DF_F.m)
'df_prctile ' % percentile to be defined as baseline (default 20)
'df_window ' % length of running window (default [], no window)
% CONTOUR PLOTS (plot_contours.m)
'plot_bck_image ' % plot background image or overlay on existing one (deafult: true)
'cont_threshold '
% VIDEO (make_patch_video.m)
'ind ' % indeces of components to be shown (deafult: 1:4)
'skip_frame ' % skip frames when showing the video (default: 1 (no skipping))
'sx ' % half size of representative patches (default: 16)
'make_avi ' % flag for saving avi video (default: 0)
'show_background ' % flag for displaying the background in the denoised panel (default: 1)
'show_contours ' % flag for showing the contour plots of the patches in the FoV (default: 0)
'cmap ' % colormap for plotting (default: 'default')
'name ' % name of saved video file (default: based on current date)
% PLOT COMPONENTS (view_patches.m)
'plot_df ' % flag for displaying DF/F estimates (default: 1)
'make_gif ' % save animation (default: 0)
'save_avi ' % save video (default: 0)
'pause_time ' % time to pause between each component (default: Inf, user has to click)
% CLASSIFY COMPONENTS PIXELS (classify_components_pixels.m)
'cl_thr ' % overlap threshold for energy for a component to be classified as true (default: 0.8)
% CLASSIFY COMPONENTS with CORRELATION (classify_comp_corr.m)
'space_thresh ' % threshold for r-value in space (default: 0.4)
'time_thresh ' % threshold for r-value in time (default: 0.4)
'A_thresh ' % threshold for determining overlap (default: 0.1)
'Npeaks ' % # of peaks to be considered (default: 5)
'peak_int ' % interval around the peak (default: -2:5)
'MinPeakDist ' % minimum peak distance for finding points of high activity (default: 10)
% ORDER COMPONENTS (order_components.m)
'nsd ' % number of standard deviations (default: 3)
'nfr ' % number of consecutive frames (default: 3)
% PATCHES (run_CNMF_patches.m)
'gnb ' % number of global background components (default: 1)
'create_memmap ' % create a memory mapped file if it is not provided in the input (default: false)
'classify_comp ' % classify components based on correlation values (default: true)
'refine_flag ' % refine components within patch processing after merging (default: true)
'patch_space_thresh ' % space correlation threshold within patch (default: 0.2)
'patch_time_thresh ' % time correlation threshold within patch (default: 0.25)
'patch_min_SNR ' % minimum SNR for accepting exceptional events within patch (default: 0.5)
'patch_min_fitness ' % maximum fitness threshold within patch (default: log(normcdf(-patch_min_SNR))*N_samples_exc)
'patch_min_fit_delta' % maximum fitness_delta threshold within patch (default: -2)
'patch_cnn_thr ' % threshold for CNN classifier within a patch (default: 0.05)
% parameters for microendoscope
'min_pnr '
'seed_method '
'min_pixel ' % minimum number of nonzero pixels for a neuron
'bd ' % number of pixels to be ignored in the boundary
'deconv_flag ' % perform deconvolution or not
% parameters for max probability test (trace_fit_extreme.m)
'max_pr_thr ' % threshold for keeping components (default: 0.9)
'fr ' % imaging frame rate in Hz (defaut: 30)
't_int ' % length of each trial in sec (default: 0.25)
'sn_fac ' % multiplicative factor for estimated noise level (default: 1)
% parameters for thresholding based on size (classify_components.m)
'max_size_thr ' % maximum size of each component in pixels (default: 300)
'min_size_thr ' % minimum size of each component in pixels (default: 9)
'size_thr ' % fraction of max value for thresholding each component before determining its size (default 0.2)
% parameters for registering components across different sessions (register_ROIs.m)
'dist_exp ' % exponent for calculating the distance between different ROIs (default: 1)
'dist_thr ' % distance threshold above which dist = Inf (default: 0.5)
'dist_maxthr ' % max thresholding for components before turing into binary masks (default: 0.15)
'dist_overlap_thr ' % threshold for detecting if one ROI is a subset of another (deafult: 0.8)
'plot_reg ' % plot registered ROIs (default: true)
% parameters for computing event exceptionality (compute_event_exceptionality.m)
'min_SNR ' % minimum SNR for accepting exceptional events (default: 2)
'decay_time ' % length of a typical transient in seconds
'robust_std ' % use robust std for computing noise in traces (false)
'N_samples_exc ' % number of samples over which to compute (default: ceil(decay_time*fr))
'min_fitness ' % threshold on time variability (default: log(normcdf(-min_SNR))*N_samples_exc)
'min_fitness_delta ' % threshold on the derivative of time variability
% parameters for CNN classifier (cnn_classifier.m)
'cnn_thr ' % threshold for CNN classifier (default: 0.2)
];
[m,~] = size(Names);
names = lower(Names);
% Combine all leading options structures o1, o2, ... in l1Set(o1,o2,...).
options = [];
for j = 1:m
eval(['options.' Names(j,:) '= [];']);
end
i = 1;
while i <= nargin
arg = varargin{i};
if ischar(arg), break; end
if ~isempty(arg) % [] is a valid options argument
if ~isa(arg,'struct')
error(sprintf(['Expected argument %d to be a string parameter name ' ...
'or an options structure\ncreated with OPTIMSET.'], i));
end
for j = 1:m
if any(strcmp(fieldnames(arg),deblank(Names(j,:))))
eval(['val = arg.' Names(j,:) ';']);
else
val = [];
end
if ~isempty(val)
eval(['options.' Names(j,:) '= val;']);
end
end
end
i = i + 1;
end
% A finite state machine to parse name-value pairs.
if rem(nargin-i+1,2) ~= 0
error('Arguments must occur in name-value pairs.');
end
expectval = 0; % start expecting a name, not a value
while i <= nargin
arg = varargin{i};
if ~expectval
if ~ischar(arg)
error(sprintf('Expected argument %d to be a string parameter name.', i));
end
lowArg = lower(arg);
j = strmatch(lowArg,names);
if isempty(j) % if no matches
error(sprintf('Unrecognized parameter name ''%s''.', arg));
elseif length(j) > 1 % if more than one match
% Check for any exact matches (in case any names are subsets of others)
k = strmatch(lowArg,names,'exact');
if length(k) == 1
j = k;
else
msg = sprintf('Ambiguous parameter name ''%s'' ', arg);
msg = [msg '(' deblank(Names(j(1),:))];
for k = j(2:length(j))'
msg = [msg ', ' deblank(Names(k,:))];
end
msg = sprintf('%s).', msg);
error(msg);
end
end
expectval = 1; % we expect a value next
else
eval(['options.' Names(j,:) '= arg;']);
expectval = 0;
end
i = i + 1;
end
if expectval
error(sprintf('Expected value for parameter ''%s''.', arg));
end
Values = [
% dataset info
{[]}
{[]}
{1}
% INITIALIZATION (initialize_components.m)
{1}
{1}
{'greedy'}
{20}
{true}
{2}
% greedy_corr parameters (greedyROI_corr.m)
{.3}
% greedyROI parameters (greedyROI.m)
{5}
{[]}
{1}
{5}
{1}
{0}
{100}
{[32,32]}
{true}
{100}
% sparse_NMF parameters (sparse_NMF_initialization.m)
{100}
{1e-4}
{1}
{.5}
% HALS initialization parameters (HALS_initialization.m)
{5}
% HALS parameters (HALS_2d.m)
{3}
{5}
% Noise and AR coefficients calculation (preprocess_data.m)
{[0.25,0.5]}
{'mean'}
{3000}
{false}
{5}
{false}
{[]}
{false}
{[64,64]}
{false}
{false}
{30}
{21}
% UPDATING SPATIAL COMPONENTS (unpdate_spatial_components.m)
{'regularized'}
{'dilate'}
{~isempty(which('parpool'))}
% determine_search_location.m
{3}
{8}
{3}
{strel('disk',1,0)}
% threshold_components.m
{'max'}
{0.25}
{0.995}
{strel('square',3)}
{[3,3]}
{true}
% UPDATING TEMPORAL COMPONENTS (update_temporal_components.m)
{1}
{'constrained_foopsi'}
{1}
{4}
{~isempty(which('parpool'))}
{false}
% CONSTRAINED DECONVOLUTION (constrained_foopsi.m)
{'cvx'}
{1}
{0.98}
{0}
% OASIS penalty parameters (deconvolveCa.m)
{0.99}
{0.5}
% MERGING (merge_ROIs.m)
{0.85}
{1}
% DF/F (extract_DF_F.m)
{20}
{[]}
% CONTOUR PLOTS (plot_contours.m)
{true}
{0.9}
% VIDEO (make_patch_video.m)
{1:4}
{1}
{16}
{0}
{1}
{1}
{'default'}
{['video_',datestr(now,30),'.avi']}
% PLOT COMPONENTS (plot_patches.m)
{1}
{0}
{0}
{Inf}
% CLASSIFY COMPONENTS PIXELS (classify_components_pixels.m)
{0.8}
% CLASSIFY COMPONENTS with CORRELATION (classify_comp_corr.m)
{0.4}
{0.4}
{0.1}
{5}
{-2:6}
{10}
% ORDER COMPONENTS (order_components.m)
{3}
{5}
% PATCHES (run_CNMF_patches.m)
{1}
{false}
{true}
{true}
{0.2}
{0.25}
{0.5}
{[]}
{-2}
{0.05}
% parameters for microendoscope
{10}
{'auto'}
{5}
{3}
{true}
% parameters for max probability test (trace_fit_extreme.m)
{0.9}
{30}
{0.25}
{1}
% parameters for size based thresholding (classify_components.m)
{320}
{9}
{0.2}
% parameters for registering components across different sessions (register_ROIs.m)
{1}
{0.5}
{0.15}
{0.8}
{true}
% parameters for computing event exceptionality (compute_event_exceptionality.m)
{2}
{0.4}
{false}
{[]}
{[]}
{-5}
% parameters for CNN classifier (cnn_classifier.m)
{0.2}
];
for j = 1:m
if eval(['isempty(options.' Names(j,:) ')'])
eval(['options.' Names(j,:) '= Values{j};']);
end
end
if isempty(options.N_samples_exc); options.N_samples_exc = ceil(options.fr*options.decay_time); end
if isempty(options.min_fitness); options.min_fitness = log(normcdf(-options.min_SNR))*options.N_samples_exc; end
if isempty(options.patch_min_fitness); options.patch_min_fitness = log(normcdf(-options.patch_min_SNR))*options.N_samples_exc; end