forked from flatironinstitute/CaImAn-MATLAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_patches_class.m
79 lines (63 loc) · 3.04 KB
/
demo_patches_class.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% demo script for splitting the field of view in patches and processing in
% parallel with or without memory mapping. The demo follows the file
% demo_patches.m using the CNMF class object
clear;
%% setup path to file and package
gcp;
path_to_package = '../ca_source_extraction'; % path to the folder that contains the package
addpath(genpath(path_to_package));
filename = '/Users/epnevmatikakis/Documents/Ca_datasets/Neurofinder/neurofinder.02.00/images/neurofinder0200_rig.tif';
% path to file (assumed motion corrected)
is_memmaped = true; % choose whether you want to load the file in memory or not
%% create object and load file
CNM = CNMF();
if is_memmaped
CNM.readFile(filename,is_memmaped);
else
CNM.readFile(filename,is_memmaped,1,2000); % load only a part of the file due to memory
end
%% set options and create patches
patch_size = [32,32]; % size of each patch along each dimension (optional, default: [32,32])
overlap = [6,6]; % amount of overlap in each dimension (optional, default: [4,4])
K = 10; % number of components to be found
gSig = 7; % std of gaussian kernel (size of neuron)
p = 2; % order of autoregressive system (p = 0 no dynamics, p=1 just decay, p = 2, both rise and decay)
gnb = 3; % order of background
merge_thr = 0.8; % merging threshold
options = CNMFSetParms(...
'd1',CNM.dims(1),'d2',CNM.dims(2),...
'search_method','dilate',... % search locations when updating spatial components
'deconv_method','constrained_foopsi',... % activity deconvolution method
'nb',1,... % number of background components per patch
'gnb',gnb,... % number of global background components
'ssub',2,...
'tsub',1,...
'p',p,... % order of AR dynamics
'merge_thr',merge_thr,... % merging threshold
'gSig',gSig,...
'spatial_method','regularized',...
'cnn_thr',0.2,...
'patch_space_thresh',0.25,...
'min_SNR',2);
CNM.optionsSet(options);
CNM.gnb = gnb;
CNM.K = K;
CNM.patch_size = patch_size; % size of each patch along each dimension (optional, default: [32,32])
CNM.overlap = overlap; % amount of overlap in each dimension (optional, default: [4,4])
CNM.createPatches(); % create patches
%% fit all patches
CNM.fitPatches();
%% component classification
CNM.evaluateComponents(); % evaluate spatial components based on their correlation with the data
CNM.CNNClassifier('') % evaluate spatial components with the CNN classifier
CNM.eventExceptionality(); % evaluate traces
CNM.keepComponents(); % keep the components that are above certain thresholds
%% repeat processing
CNM.updateSpatial();
CNM.updateTemporal();
CNM.extractDFF(); % extract DF/F values.
%% do some plotting
figure;
CNM.correlationImage();
CNM.plotContours();
CNM.plotComponentsGUI(); % display all components