-
Notifications
You must be signed in to change notification settings - Fork 0
/
CapitalCost_SurfacePlant_ORC_GEOPHIRES.m
159 lines (150 loc) · 5.32 KB
/
CapitalCost_SurfacePlant_ORC_GEOPHIRES.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
function [C_plant] = CapitalCost_SurfacePlant_ORC_GEOPHIRES(T_in_C, ElectricityProduced_MW, cycleType, params)
% Electricity in MW
% T in C
% Cost in dollars
% GEOPHIRES Relations
if (strcmp(cycleType,'SubcriticalORC'))
MaxProducedTemperature = T_in_C;
if (MaxProducedTemperature < 150)
C3 = -1.458333E-3;
C2 = 7.6875E-1;
C1 = -1.347917E2;
C0 = 1.0075E4;
CCAPP1 = C3*MaxProducedTemperature^3 + C2*MaxProducedTemperature^2 + C1*MaxProducedTemperature + C0;
else
CCAPP1 = 2231 - 2*(MaxProducedTemperature-150);
end
Cplantcorrelation = CCAPP1*(ElectricityProduced_MW/15)^(-0.06)*ElectricityProduced_MW*1000./1E6;
elseif (strcmp(cycleType,'SupercriticalORC'))
MaxProducedTemperature = T_in_C;
if (MaxProducedTemperature < 150)
C3 = -1.458333E-3;
C2 = 7.6875E-1;
C1 = -1.347917E2;
C0 = 1.0075E4;
CCAPP1 = C3*MaxProducedTemperature^3 + C2*MaxProducedTemperature^2 + C1*MaxProducedTemperature + C0;
else
CCAPP1 = 2231 - 2*(MaxProducedTemperature-150);
end
%factor 1.1 to make supercritical 10% more expansive than subcritical
Cplantcorrelation = 1.1*CCAPP1*(ElectricityProduced_MW/15)^(-0.06)*ElectricityProduced_MW*1000./1E6;
elseif (strcmp(cycleType,'SingleFlash'))
if (ElectricityProduced_MW<10)
C2 = 4.8472E-2;
C1 = -35.2186;
C0 = 8.4474E3;
D2 = 4.0604E-2;
D1 = -29.3817;
D0 = 6.9911E3;
PLL = 5;
PRL = 10;
elseif (ElectricityProduced_MW<25)
C2 = 4.0604E-2;
C1 = -29.3817;
C0 = 6.9911E3;
D2 = 3.2773E-2;
D1 = -23.5519;
D0 = 5.5263E3;
PLL = 10;
PRL = 25;
elseif (ElectricityProduced_MW<50)
C2 = 3.2773E-2;
C1 = -23.5519;
C0 = 5.5263E3;
D2 = 3.4716E-2;
D1 = -23.8139;
D0 = 5.1787E3;
PLL = 25;
PRL = 50;
elseif (ElectricityProduced_MW<75)
C2 = 3.4716E-2;
C1 = -23.8139;
C0 = 5.1787E3;
D2 = 3.5271E-2;
D1 = -24.3962;
D0 = 5.1972E3;
PLL = 50;
PRL = 75;
else
C2 = 3.5271E-2;
C1 = -24.3962;
C0 = 5.1972E3;
D2 = 3.3908E-2;
D1 = -23.4890;
D0 = 5.0238E3;
PLL = 75;
PRL = 100;
end
maxProdTemp = T_in_C;
CCAPPLL = C2*maxProdTemp^2 + C1*maxProdTemp + C0;
CCAPPRL = D2*maxProdTemp^2 + D1*maxProdTemp + D0;
b = log(CCAPPRL/CCAPPLL)/log(PRL/PLL);
a = CCAPPRL/PRL^b;
%factor 0.75 to make double flash 25% more expansive than single flash
Cplantcorrelation = 0.8*a*(ElectricityProduced_MW^b)*ElectricityProduced_MW*1000./1E6;
elseif (strcmp(cycleType,'DoubleFlash'))
if (ElectricityProduced_MW<10)
C2 = 4.8472E-2;
C1 = -35.2186;
C0 = 8.4474E3;
D2 = 4.0604E-2;
D1 = -29.3817;
D0 = 6.9911E3;
PLL = 5;
PRL = 10;
elseif (ElectricityProduced_MW<25)
C2 = 4.0604E-2;
C1 = -29.3817;
C0 = 6.9911E3;
D2 = 3.2773E-2;
D1 = -23.5519;
D0 = 5.5263E3;
PLL = 10;
PRL = 25;
elseif (ElectricityProduced_MW<50)
C2 = 3.2773E-2;
C1 = -23.5519;
C0 = 5.5263E3;
D2 = 3.4716E-2;
D1 = -23.8139;
D0 = 5.1787E3;
PLL = 25;
PRL = 50;
elseif (ElectricityProduced_MW<75)
C2 = 3.4716E-2;
C1 = -23.8139;
C0 = 5.1787E3;
D2 = 3.5271E-2;
D1 = -24.3962;
D0 = 5.1972E3;
PLL = 50;
PRL = 75;
else
C2 = 3.5271E-2;
C1 = -24.3962;
C0 = 5.1972E3;
D2 = 3.3908E-2;
D1 = -23.4890;
D0 = 5.0238E3;
PLL = 75;
PRL = 100;
end
maxProdTemp = T_in_C;
CCAPPLL = C2*maxProdTemp^2 + C1*maxProdTemp + C0;
CCAPPRL = D2*maxProdTemp^2 + D1*maxProdTemp + D0;
b = log(CCAPPRL/CCAPPLL)/log(PRL/PLL);
a = CCAPPRL/PRL^b;
Cplantcorrelation = a*(ElectricityProduced_MW^b)*ElectricityProduced_MW*1000./1E6;
else
throw(MException('CapitalCost_SurfacePlant_ORC_GEOPHIRES:UnknownOrcModel','Unknown GEOPHIRES ORC Cost Model'));
end
%1.02 to convert cost from 2012 to 2016 #factor 1.15 for 15% contingency and 1.12 for 12% indirect costs.
% Assume 2012 dollars
% Geophires relations in millions of dollars
C_plant_2012 = 1.12*1.15*Cplantcorrelation * 1e6; %*1.02;
PPI_HX = PPI('PPI_HX', params.costYear) / PPI('PPI_HX', 2012);
PPI_T_G = PPI('PPI_T-G', params.costYear) / PPI('PPI_T-G', 2012);
PPI_PE = PPI('PPI_PE', params.costYear) / PPI('PPI_PE', 2012);
PPI_avg = mean([PPI_HX, PPI_T_G, PPI_PE]);
C_plant = C_plant_2012 * PPI_avg;
end