forked from mbjoseph/CARstan
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
309 lines (220 loc) · 14.8 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
---
title: "Exact sparse CAR models in Stan"
author: "Max Joseph"
date: "August 20, 2016"
output:
html_document:
keep_md: true
---
This document details sparse exact conditional autoregressive (CAR) models in Stan as an extension of previous work on approximate sparse CAR models in Stan.
Sparse representations seem to give order of magnitude efficiency gains, scaling better for large spatial data sets.
## CAR priors for spatial random effects
Conditional autoregressive (CAR) models are popular as prior distributions for spatial random effects with areal spatial data.
If we have a random quantity $\phi = (\phi_1, \phi_2, ..., \phi_n)'$ at $n$ areal locations, the CAR model is often expressed via full conditional distributions:
$$\phi_i \mid \phi_j, j \neq i \sim N(\alpha \sum_{j = 1}^n b_{ij} \phi_j, \tau_i^{-1})$$
where $\tau_i$ is a spatially varying precision parameter, and $b_{ii} = 0$.
By Brook's Lemma, the joint distribution of $\phi$ is then:
$$\phi \sim N(0, [D_\tau (I - \alpha B)]^{-1}).$$
If we assume the following:
- $D_\tau = \tau D$
- $D = diag(m_i)$: an $n \times n$ diagonal matrix with $m_i$ = the number of neighbors for location $i$
- $I$: an $n \times n$ identity matrix
- $\alpha$: a parameter that controls spatial dependence ($\alpha = 0$ implies spatial independence, and $\alpha = 1$ collapses to an *intrisnic conditional autoregressive* (IAR) specification)
- $B = D^{-1} W$: the scaled adjacency matrix
- $W$: the adjacency matrix ($w_{ii} = 0, w_{ij} = 1$ if $i$ is a neighbor of $j$, and $w_{ij}=0$ otherwise)
then the CAR prior specification simplifies to:
$$\phi \sim N(0, [\tau (D - \alpha W)]^{-1}).$$
The $\alpha$ parameter ensures propriety of the joint distrbution of $\phi$ as long as $| \alpha | < 1$ (Gelfand & Vounatsou 2003).
However, $\alpha$ is often taken as 1, leading to the IAR specification which creates a singular precision matrix and an improper prior distribution.
## A Poisson specification
Suppose we have aggregated count data $y_1, y_2, ..., y_n$ at $n$ locations, and we expect that neighboring locations will have similar counts.
With a Poisson likelihood:
$$y_i \sim \text{Poisson}(\text{exp}(X_{i} \beta + \phi_i + \log(\text{offset}_i)))$$
where $X_i$ is a design vector (the $i^{th}$ row from a design matrix), $\beta$ is a vector of coefficients, $\phi_i$ is a spatial adjustment, and $\log(\text{offset}_i)$ accounts for differences in expected values or exposures at the spatial units (popular choices include area for physical processes, or population size for disease applications).
If we specify a proper CAR prior for $\phi$, then we have that $\phi \sim \text{N}(0, [\tau (D - \alpha W)]^{-1})$ where $\tau (D - \alpha W)$ is the precision matrix $\Sigma^{-1}$.
A complete Bayesian specification would include priors for the remaining parameters $\alpha$, $\tau$, and $\beta$, such that our posterior distribution is:
$$p(\phi, \beta, \alpha, \tau \mid y) \propto p(y \mid \beta, \phi) p(\phi \mid \alpha, \tau) p(\alpha) p(\tau) p(\beta)$$
## Example: Scottish lip cancer data
To demonstrate this approach we'll use the Scottish lip cancer data example (some documentation [here](https://cran.r-project.org/web/packages/CARBayesdata/CARBayesdata.pdf)).
This data set includes observed lip cancer case counts at 56 spatial units in Scotland, with an expected number of cases to be used as an offset, and an area-specific continuous covariate that represents the proportion of the population employed in agriculture, fishing, or forestry.
The model structure is identical to the Poisson model outlined above.
```{r, echo = FALSE, message = FALSE}
library(spdep)
library(maptools)
gpclibPermit()
library(dplyr)
library(ggplot2)
proj4str <- "+init=epsg:27700 +proj=tmerc
+lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000
+datum=OSGB36 +units=m +no_defs +ellps=airy
+towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894"
scotlips <- readShapePoly('data/scotland', proj4string = CRS(proj4str))
scotlips@data$id <- rownames(scotlips@data)
scotlips %>%
fortify(region = 'id') %>%
full_join(scotlips@data, by = 'id') %>%
ggplot(aes(x = long, y = lat, group = group, fill = Observed)) +
geom_polygon() +
coord_equal() +
scale_fill_gradientn('Lip cancer cases', colors = topo.colors(3)) +
theme(axis.line = element_blank(),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.background = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.background = element_blank())
```
Let's start by loading packages and data, specifying the number of MCMC iterations and chains.
```{r, message=FALSE}
library(ggmcmc)
library(dplyr)
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
source('data/scotland_lip_cancer.RData')
# Define MCMC parameters
niter <- 1E4 # definitely overkill, but good for comparison
nchains <- 4
```
To fit the full model, we'll pull objects loaded with our Scotland lip cancer data.
I'll use `model.matrix` to generate a design matrix, centering and scaling the continuous covariate `x` to reduce correlation between the intercept and slope estimates.
```{r}
W <- A # adjacency matrix
scaled_x <- c(scale(x))
X <- model.matrix(~scaled_x)
full_d <- list(n = nrow(X), # number of observations
p = ncol(X), # number of coefficients
X = X, # design matrix
y = O, # observed number of cases
log_offset = log(E), # log(expected) num. cases
W = W) # adjacency matrix
```
#### Stan implementation: CAR with `multi_normal_prec`
Our model statement mirrors the structure outlined above, with explicit normal and gamma priors on $\beta$ and $\tau$ respectively, and a $\text{Uniform}(0, 1)$ prior for $\alpha$.
The prior on $\phi$ is specified via the `multi_normal_prec` function, passing in $\tau (D - \alpha W)$ as the precision matrix.
```{r comment='', echo = FALSE}
cat(readLines('stan/car_prec.stan'), sep = '\n')
```
Fitting the model with `rstan`:
```{r}
full_fit <- stan('stan/car_prec.stan', data = full_d,
iter = niter, chains = nchains, verbose = FALSE)
print(full_fit, pars = c('beta', 'tau', 'alpha', 'lp__'))
# visualize results
to_plot <- c('beta', 'tau', 'alpha', 'phi[1]', 'phi[2]', 'phi[3]', 'lp__')
traceplot(full_fit, pars = to_plot)
```
### A more efficient sparse representation
Although we could specify our multivariate normal prior for $\phi$ directly in Stan via `multi_normal_prec`, as we did above, in this case we will accrue computational efficiency gains by manually specifying $p(\phi \mid \tau, \alpha)$ directly via the log probability accumulator.
The log probability of $\phi$ is:
$$\log(p(\phi \mid \tau, \alpha)) = - \frac{n}{2} \log(2 \pi) + \frac{1}{2} \log(\text{det}( \Sigma^{-1})) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
In Stan, we only need the log posterior up to an additive constant so we can drop the first term.
Then, substituting $\tau (D - \alpha W)$ for $\Sigma^{-1}$:
$$\frac{1}{2} \log(\text{det}(\tau (D - \alpha W))) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
$$ = \frac{1}{2} \log(\tau ^ n \text{det}(D - \alpha W)) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
$$ = \frac{n}{2} \log(\tau) + \frac{1}{2} \log(\text{det}(D - \alpha W)) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
There are two ways that we can accrue computational efficiency gains:
1. Sparse representations of $\Sigma^{-1}$ to expedite computation of $\phi^T \Sigma^{-1} \phi$ (this work was done by Kyle foreman previously, e.g., https://groups.google.com/d/topic/stan-users/M7T7EIlyhoo/discussion).
2. Efficient computation of the determinant. Jin, Carlin, and Banerjee (2005) show that:
$$\text{det}(D - \alpha W) \propto \prod_{i = 1}^n (1 - \alpha \lambda_i)$$
where $\lambda_1, ..., \lambda_n$ are the eigenvalues of $D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$, which can be computed ahead of time and passed in as data.
Because we only need the log posterior up to an additive constant, we can use this result which is proportional up to some multiplicative constant $c$:
$$\frac{n}{2} \log(\tau) + \frac{1}{2} \log(c \prod_{i = 1}^n (1 - \alpha \lambda_i)) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
$$= \frac{n}{2} \log(\tau) + \frac{1}{2} \log(c) + \frac{1}{2} \log(\prod_{i = 1}^n (1 - \alpha \lambda_i)) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
Again dropping additive constants:
$$\frac{n}{2} \log(\tau) + \frac{1}{2} \log(\prod_{i = 1}^n (1 - \alpha \lambda_i)) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
$$= \frac{n}{2} \log(\tau) + \frac{1}{2} \sum_{i = 1}^n \log(1 - \alpha \lambda_i) - \frac{1}{2} \phi^T \Sigma^{-1} \phi$$
### Stan implementation: sparse CAR
In the Stan model statement's `transformed data` block, we compute $\lambda_1, ..., \lambda_n$ (the eigenvalues of $D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$), and generate a sparse representation for W (`Wsparse`), which is assumed to be symmetric, such that the adjacency relationships can be represented in a two column matrix where each row is an adjacency relationship between two sites.
The Stan model statement for the sparse implementation never constructs the precision matrix, and does not call any of the `multi_normal*` functions.
Instead, we use define a `sparse_car_lpdf()` function and use it in the model block.
```{r comment='', echo = FALSE}
cat(readLines('stan/car_sparse.stan'), sep = '\n')
```
Fitting the model:
```{r}
sp_d <- list(n = nrow(X), # number of observations
p = ncol(X), # number of coefficients
X = X, # design matrix
y = O, # observed number of cases
log_offset = log(E), # log(expected) num. cases
W_n = sum(W) / 2, # number of neighbor pairs
W = W) # adjacency matrix
sp_fit <- stan('stan/car_sparse.stan', data = sp_d,
iter = niter, chains = nchains, verbose = FALSE)
print(sp_fit, pars = c('beta', 'tau', 'alpha', 'lp__'))
traceplot(sp_fit, pars = to_plot)
```
### MCMC Efficiency comparison
The main quantity of interest is the effective number of samples per unit time.
Sparsity gives us an order of magnitude or so gains, mostly via reductions in run time.
```{r, echo = FALSE}
library(knitr)
efficiency <- data.frame(model = c('full', 'sparse'),
n_eff = c(summary(full_fit)$summary['lp__', 'n_eff'],
summary(sp_fit)$summary['lp__', 'n_eff']),
elapsed_time = c(get_elapsed_time(full_fit) %>% sum(),
get_elapsed_time(sp_fit) %>% sum())) %>%
mutate(n_eff_per_sec = n_eff / elapsed_time)
names(efficiency) <- c('Model', 'Number of effective samples', 'Elapsed time (sec)',
'Effective samples / sec)')
kable(efficiency)
```
### Posterior distribution comparison
Let's compare the estimates to make sure that we get the same answer with both approaches.
In this case, I've used more MCMC iterations than we would typically need in to get a better estimate of the tails of each marginal posterior distribution so that we can compare the 95% credible intervals among the two approaches.
```{r fig.height = 12, echo = FALSE, message = FALSE}
post_full <- ggs(full_fit)
post_full$model <- 'full'
post_sp <- ggs(sp_fit)
post_sp$model <- 'sparse'
post <- full_join(post_full, post_sp)
psumm <- post %>%
group_by(model, Parameter) %>%
summarize(median = median(value),
lo = quantile(value, .025),
hi = quantile(value, .975)) %>%
mutate(paramXmod = paste(Parameter, model, sep = '_'))
# compare estimated spatial random effects
psumm %>%
filter(grepl('phi', Parameter)) %>%
ggplot(aes(x = median, y = paramXmod, color = model)) +
geom_point() +
geom_segment(aes(x = lo, xend = hi, yend = paramXmod)) +
xlab('Estimate') +
ggtitle('Comparison on random effect estimates')
```
```{r, echo = FALSE, message = FALSE}
# compare remaining estimates
psumm %>%
filter(!grepl('phi', Parameter)) %>%
ggplot(aes(x = median, y = paramXmod, color = model)) +
geom_point() +
geom_segment(aes(x = lo, xend = hi, yend = paramXmod)) +
xlab('Estimate') +
ggtitle(expression(paste('Comparison of parameter estimates excluding'), phi))
```
The two approaches give the same answers (more or less, with small differences arising due to MCMC sampling error).
## Postscript: sparse IAR specification
Although the IAR prior for $\phi$ that results from $\alpha = 1$ is improper, it remains popular (Besag, York, and Mollie, 1991).
In practice, these models are typically fit with a sum to zero constraints: $\sum_{i\text{ in connected coponent}} \phi_i = 0$ for each connected component of the graph. This allows us to interpret both the overall mean and the component-wise means.
With $\alpha$ fixed to one, we have:
$$\log(p(\phi \mid \tau)) = - \frac{n}{2} \log(2 \pi) + \frac{1}{2} \log(\text{det}^*(\tau (D - W))) - \frac{1}{2} \phi^T \tau (D - W) \phi$$
$$ = - \frac{n}{2} \log(2 \pi) + \frac{1}{2} \log(\tau^{n-k} \text{det}^*(D - W)) - \frac{1}{2} \phi^T \tau (D - W) \phi$$
$$ = - \frac{n}{2} \log(2 \pi) + \frac{1}{2} \log(\tau^{n-k}) + \frac{1}{2} \log(\text{det}^*(D - W)) - \frac{1}{2} \phi^T \tau (D - W) \phi$$
Here $\text{det}^*(A)$ is the generalized determinant of the square matrix $A$ defined as the product of its non-zero eigenvalues, and $k$ is the number of connected components in the graph. For the Scottish Lip Cancer data, there is only one connected component and $k=1$. The reason that we need to use the generalized determinant is that the precision matrix is, by definition, singular in intrinsic models as the support of the Gaussian distribution is on a subspace with fewer than $n$ dimensions. For the classical ICAR(1) model, we know that the directions correpsonding to the zero eigenvalues are exactly the vectors that are constant on each connected component of the graph and hence $k$ is the number of connected components.
Dropping additive constants, the quantity to increment becomes:
$$ \frac{1}{2} \log(\tau^{n-k}) - \frac{1}{2} \phi^T \tau (D - W) \phi$$
And the corresponding Stan syntax would be:
```{r comment='', echo = FALSE}
cat(readLines('stan/iar_sparse.stan'), sep = '\n')
```
## References
Besag, Julian, Jeremy York, and Annie Mollié. "Bayesian image restoration, with two applications in spatial statistics." Annals of the institute of statistical mathematics 43.1 (1991): 1-20.
Gelfand, Alan E., and Penelope Vounatsou. "Proper multivariate conditional autoregressive models for spatial data analysis." Biostatistics 4.1 (2003): 11-15.
Jin, Xiaoping, Bradley P. Carlin, and Sudipto Banerjee. "Generalized hierarchical multivariate CAR models for areal data." Biometrics 61.4 (2005): 950-961.