forked from lefnire/tforce_btc_trader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
93 lines (78 loc) · 3.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
from enum import Enum
class ScoreMode(Enum):
"""Different ways we might consider scoring our runs. This is for BO's sake, not for our RL agent -
ie helps us decide which hyper combos to pursue."""
MEAN = 1 # mean of all episodes
LAST = 2 # final episode (the one w/o killing)
POS = 3 # max # positive tests
CONSECUTIVE_POS = 4 # max # *consecutive* positives
TOTAL = 5
MIX = 6
MODE = ScoreMode.MIX
def calculate_score(advantages):
for i, a in enumerate(advantages):
if a == 0.: advantages[i] = -1.
if MODE == ScoreMode.MEAN:
return np.mean(advantages)
elif MODE == ScoreMode.LAST:
return advantages[-1]
elif MODE == ScoreMode.MIX:
return np.mean(advantages[:-1]) + advantages[-1]
elif MODE == ScoreMode.POS:
return sum(1 for x in advantages if x > 0)
elif MODE == ScoreMode.TOTAL:
return sum(x for x in advantages)
elif MODE == ScoreMode.CONSECUTIVE_POS:
score, curr_consec = 0, 0
for i, adv in enumerate(advantages):
if adv > 0:
curr_consec += 1
continue
if curr_consec > score:
score = curr_consec
curr_consec = 0
return score
def add_common_args(parser):
parser.add_argument('-g', '--gpu-split', type=float, default=1, help="Num ways we'll split the GPU (how many tabs you running?)")
parser.add_argument('-n', '--net-type', type=str, default='lstm')
parser.add_argument('-t', '--n-tests', type=int, default=30, help="Number of times to split to training and run a test. This slows things down, so balance graph resolution w/ performance.")
parser.add_argument('-s', '--n-steps', type=int, default=80, help="Number of 1k timesteps total to train. (using 50 means 500,000)")
parser.add_argument('--autoencode', action="store_true", default=False, help="If you're running out of GPU memory, try --autoencode which scales things down")
parser.add_argument('--clear-scalers', action="store_true", default=False, help="Should we delete the saved reward/state scaler.pkl objects, start over?")
# One array per running instance (ie, if you have 2 separate tabs running hypersearch.py, then you'll want an array of
# two arrays. `--guess 0` will go through all the overrides in the first array, `--guess 1` all the overrides in the
# second array
guess_overrides = [
[
{}, # usually want 1 empty dict, which means "try the hard-coded defaults"
]
]
class DotDict(object):
"""
Utility class that lets you get/set attributes with a dot-seperated string key, like `d = a['b.c.d']` or `a['b.c.d'] = 1`
"""
def __init__(self, obj):
self._data = obj
self.update = self._data.update
def __getitem__(self, path):
v = self._data
for k in path.split('.'):
if k not in v:
return None
v = v[k]
return v
def __setitem__(self, path, val):
v = self._data
path = path.split('.')
for i, k in enumerate(path):
if i == len(path) - 1:
v[k] = val
return
elif k in v:
v = v[k]
else:
v[k] = {}
v = v[k]
def to_dict(self):
return self._data