-
Notifications
You must be signed in to change notification settings - Fork 1
/
prep.py
248 lines (191 loc) · 7.06 KB
/
prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import time
import sys
import argparse
import os
from glob import glob
import json
import gzip
import tarfile
import urllib.request
import h5py
import numpy as np
import pandas as pd
from skimage.transform import resize
from accounts import account_entries, account_params, json_entries
import sources
DATASETS = ["random", "weather", "accounts", "flights", "all"]
here = os.path.dirname(__file__)
data_dir = os.path.abspath(os.path.join(here, "data"))
def parse_args(args=None):
parser = argparse.ArgumentParser(
description="Downloads, generates and prepares data for the Dask tutorial."
)
parser.add_argument(
"--no-ssl-verify",
dest="no_ssl_verify",
action="store_true",
default=False,
help="Disables SSL verification.",
)
parser.add_argument(
"--small",
action="store_true",
default=None,
help="Whether to use smaller example datasets. Checks DASK_TUTORIAL_SMALL environment variable if not specified.",
)
parser.add_argument(
"-d", "--dataset", choices=DATASETS, help="Datasets to generate.", default="all"
)
return parser.parse_args(args)
if not os.path.exists(data_dir):
raise OSError(
"data/ directory not found, aborting data preparation. "
'Restore it with "git checkout data" from the base '
"directory."
)
def flights(small=None):
start = time.time()
flights_raw = os.path.join(data_dir, "nycflights.tar.gz")
flightdir = os.path.join(data_dir, "nycflights")
jsondir = os.path.join(data_dir, "flightjson")
if small is None:
small = bool(os.environ.get("DASK_TUTORIAL_SMALL", False))
if small:
N = 500
else:
N = 10_000
if not os.path.exists(flights_raw):
print("- Downloading NYC Flights dataset... ", end="", flush=True)
url = sources.flights_url
urllib.request.urlretrieve(url, flights_raw)
print("done", flush=True)
if not os.path.exists(flightdir):
print("- Extracting flight data... ", end="", flush=True)
tar_path = os.path.join(data_dir, "nycflights.tar.gz")
with tarfile.open(tar_path, mode="r:gz") as flights:
flights.extractall("data/")
if small:
for path in glob(os.path.join(data_dir, "nycflights", "*.csv")):
with open(path, "r") as f:
lines = f.readlines()[:1000]
with open(path, "w") as f:
f.writelines(lines)
print("done", flush=True)
if not os.path.exists(jsondir):
print("- Creating json data... ", end="", flush=True)
os.mkdir(jsondir)
for path in glob(os.path.join(data_dir, "nycflights", "*.csv")):
prefix = os.path.splitext(os.path.basename(path))[0]
df = pd.read_csv(path, nrows=N)
df.to_json(
os.path.join(data_dir, "flightjson", prefix + ".json"),
orient="records",
lines=True,
)
print("done", flush=True)
else:
return
end = time.time()
print("** Created flights dataset! in {:0.2f}s**".format(end - start))
def random_array(small=None):
if small is None:
small = bool(os.environ.get("DASK_TUTORIAL_SMALL", False))
if small:
blocksize = 5000
else:
blocksize = 1000000
nblocks = 1000
shape = nblocks * blocksize
t0 = time.time()
if os.path.exists(os.path.join(data_dir, "random.hdf5")):
return
with h5py.File(os.path.join(data_dir, "random.hdf5"), mode="w") as f:
dset = f.create_dataset("/x", shape=(shape,), dtype="f4")
for i in range(0, shape, blocksize):
dset[i : i + blocksize] = np.random.exponential(size=blocksize)
t1 = time.time()
print("Created random data for array exercise in {:0.2f}s".format(t1 - t0))
def accounts_csvs(small=None):
t0 = time.time()
if small is None:
small = bool(os.environ.get("DASK_TUTORIAL_SMALL", False))
if small:
num_files, n, k = 3, 10000, 100
else:
num_files, n, k = 3, 1000000, 500
fn = os.path.join(data_dir, "accounts.%d.csv" % (num_files - 1))
if os.path.exists(fn):
return
args = account_params(k)
for i in range(num_files):
df = account_entries(n, *args)
df.to_csv(os.path.join(data_dir, "accounts.%d.csv" % i), index=False)
t1 = time.time()
print("Created CSV acccouts in {:0.2f}s".format(t1 - t0))
def accounts_json(small=None):
t0 = time.time()
if small is None:
small = bool(os.environ.get("DASK_TUTORIAL_SMALL", False))
if small:
num_files, n, k = 50, 10000, 250
else:
num_files, n, k = 50, 100000, 500
fn = os.path.join(data_dir, "accounts.%02d.json.gz" % (num_files - 1))
if os.path.exists(fn):
return
args = account_params(k)
for i in range(num_files):
seq = json_entries(n, *args)
fn = os.path.join(data_dir, "accounts.%02d.json.gz" % i)
with gzip.open(fn, "wb") as f:
f.write(os.linesep.join(map(json.dumps, seq)).encode())
t1 = time.time()
print("Created JSON acccouts in {:0.2f}s".format(t1 - t0))
def create_weather(small=None):
t0 = time.time()
if small is None:
small = bool(os.environ.get("DASK_TUTORIAL_SMALL", False))
if small:
growth = 1
else:
growth = 32
filenames = sorted(glob(os.path.join(data_dir, "weather-small", "*.hdf5")))
if not filenames:
ws_dir = os.path.join(data_dir, "weather-small")
raise ValueError("Did not find any hdf5 files in {}".format(ws_dir))
if not os.path.exists(os.path.join(data_dir, "weather-big")):
os.mkdir(os.path.join(data_dir, "weather-big"))
if all(os.path.exists(fn.replace("small", "big")) for fn in filenames):
return
for fn in filenames:
with h5py.File(fn, mode="r") as f:
x = f["/t2m"][:]
if small:
y = x
chunks = (180, 180)
else:
y = resize(x, (x.shape[0] * growth, x.shape[1] * growth), mode="constant")
chunks = (500, 500)
out_fn = os.path.join(data_dir, "weather-big", os.path.split(fn)[-1])
with h5py.File(out_fn, mode="w") as f:
f.create_dataset("/t2m", data=y, chunks=chunks)
t1 = time.time()
print("Created weather dataset in {:0.2f}s".format(t1 - t0))
def main(args=None):
args = parse_args(args)
if args.no_ssl_verify:
print("- Disabling SSL Verification... ", end="", flush=True)
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
print("done", flush=True)
if args.dataset == "random" or args.dataset == "all":
random_array(args.small)
if args.dataset == "weather" or args.dataset == "all":
create_weather(args.small)
if args.dataset == "accounts" or args.dataset == "all":
accounts_csvs(args.small)
accounts_json(args.small)
if args.dataset == "flights" or args.dataset == "all":
flights(args.small)
if __name__ == "__main__":
sys.exit(main())