Skip to content

Releases: drizzle-team/drizzle-orm

0.31.3

08 Jul 13:25
f0c5aff
Compare
Choose a tag to compare

Bug fixed

  • 🛠️ Fixed RQB behavior for tables with same names in different schemas
  • 🛠️ Fixed [BUG]: Mismatched type hints when using RDS Data API - #2097

New Prisma-Drizzle extension

import { PrismaClient } from '@prisma/client';
import { drizzle } from 'drizzle-orm/prisma/pg';
import { User } from './drizzle';

const prisma = new PrismaClient().$extends(drizzle());
const users = await prisma.$drizzle.select().from(User);

For more info, check docs: https://orm.drizzle.team/docs/prisma

v0.32.0-beta

27 Jun 12:38
5cc2ae0
Compare
Choose a tag to compare
v0.32.0-beta Pre-release
Pre-release

Preview release for [email protected] and [email protected]

Current features are preview for 0.32.0 and 0.23.0 versions and are available under generated tag

To install this preview release, you would need to:

npm i drizzle-orm@generated
npm i drizzle-kit@generated -D

This release will create a GitHub discussions post, so feel free to report threr any issues you find

It's not mandatory to upgrade both packages, but if you want to use the new features in both queries and migrations, you will need to upgrade both packages

New Features

🎉 PostgreSQL Sequences

You can now specify sequences in Postgres within any schema you need and define all the available properties

Example
import { pgSchema, pgSequence } from "drizzle-orm/pg-core";

// No params specified
export const customSequence = pgSequence("name");

// Sequence with params
export const customSequence = pgSequence("name", {
      startWith: 100,
      maxValue: 10000,
      minValue: 100,
      cycle: true,
      cache: 10,
      increment: 2
});

// Sequence in custom schema
export const customSchema = pgSchema('custom_schema');

export const customSequence = customSchema.sequence("name");

🎉 PostgreSQL Identity Columns

Source: As mentioned, the serial type in Postgres is outdated and should be deprecated. Ideally, you should not use it. Identity columns are the recommended way to specify sequences in your schema, which is why we are introducing the identity columns feature

Example
import { pgTable, integer, text } from 'drizzle-orm/pg-core' 

export const ingredients = pgTable("ingredients", {
  id: integer("id").primaryKey().generatedAlwaysAsIdentity({ startWith: 1000 }),
  name: text("name").notNull(),
  description: text("description"),
});

You can specify all properties available for sequences in the .generatedAlwaysAsIdentity() function. Additionally, you can specify custom names for these sequences

PostgreSQL docs reference.

🎉 PostgreSQL Generated Columns

You can now specify generated columns on any column supported by PostgreSQL to use with generated columns

Example with generated column for tsvector

Note: we will add tsVector column type before latest release

import { SQL, sql } from "drizzle-orm";
import { customType, index, integer, pgTable, text } from "drizzle-orm/pg-core";

const tsVector = customType<{ data: string }>({
  dataType() {
    return "tsvector";
  },
});

export const test = pgTable(
  "test",
  {
    id: integer("id").primaryKey().generatedAlwaysAsIdentity(),
    content: text("content"),
    contentSearch: tsVector("content_search", {
      dimensions: 3,
    }).generatedAlwaysAs(
      (): SQL => sql`to_tsvector('english', ${test.content})`
    ),
  },
  (t) => ({
    idx: index("idx_content_search").using("gin", t.contentSearch),
  })
);

In case you don't need to reference any columns from your table, you can use just sql template or a string

export const users = pgTable("users", {
  id: integer("id"),
  name: text("name"),
  generatedName: text("gen_name").generatedAlwaysAs(sql`hello world!`),
  generatedName1: text("gen_name1").generatedAlwaysAs("hello world!"),
}),

🎉 MySQL Generated Columns

You can now specify generated columns on any column supported by MySQL to use with generated columns

You can specify both stored and virtual options, for more info you can check MySQL docs

Also MySQL has a few limitation for such columns usage, which is described here

Drizzle Kit will also have limitations for push command:

  1. You can't change the generated constraint expression and type using push. Drizzle-kit will ignore this change. To make it work, you would need to drop the column, push, and then add a column with a new expression. This was done due to the complex mapping from the database side, where the schema expression will be modified on the database side and, on introspection, we will get a different string. We can't be sure if you changed this expression or if it was changed and formatted by the database. As long as these are generated columns and push is mostly used for prototyping on a local database, it should be fast to drop and create generated columns. Since these columns are generated, all the data will be restored

  2. generate should have no limitations

Example
export const users = mysqlTable("users", {
  id: int("id"),
  id2: int("id2"),
  name: text("name"),
  generatedName: text("gen_name").generatedAlwaysAs(
    (): SQL => sql`${schema2.users.name} || 'hello'`,
    { mode: "stored" }
  ),
  generatedName1: text("gen_name1").generatedAlwaysAs(
    (): SQL => sql`${schema2.users.name} || 'hello'`,
    { mode: "virtual" }
  ),
}),

In case you don't need to reference any columns from your table, you can use just sql template or a string in .generatedAlwaysAs()

🎉 SQLite Generated Columns

You can now specify generated columns on any column supported by SQLite to use with generated columns

You can specify both stored and virtual options, for more info you can check SQLite docs

Also SQLite has a few limitation for such columns usage, which is described here

Drizzle Kit will also have limitations for push and generate command:

  1. You can't change the generated constraint expression with the stored type in an existing table. You would need to delete this table and create it again. This is due to SQLite limitations for such actions. We will handle this case in future releases (it will involve the creation of a new table with data migration).

  2. You can't add a stored generated expression to an existing column for the same reason as above. However, you can add a virtual expression to an existing column.

  3. You can't change a stored generated expression in an existing column for the same reason as above. However, you can change a virtual expression.

  4. You can't change the generated constraint type from virtual to stored for the same reason as above. However, you can change from stored to virtual.

New Drizzle Kit features

🎉 Migrations support for all the new orm features

PostgreSQL sequences, identity columns and generated columns for all dialects

🎉 New flag --force for drizzle-kit push

You can auto-accept all data-loss statements using the push command. It's only available in CLI parameters. Make sure you always use it if you are fine with running data-loss statements on your database

🎉 New migrations flag prefix

You can now customize migration file prefixes to make the format suitable for your migration tools:

  • index is the default type and will result in 0001_name.sql file names;
  • supabase and timestamp are equal and will result in 20240627123900_name.sql file names;
  • unix will result in unix seconds prefixes 1719481298_name.sql file names;
  • none will omit the prefix completely;
Example: Supabase migrations format
import { defineConfig } from "drizzle-kit";

export default defineConfig({
  dialect: "postgresql",
  migrations: {
    prefix: 'supabase'
  }
});

0.31.2

07 Jun 15:27
4ecfe1f
Compare
Choose a tag to compare
  • 🎉 Added support for TiDB Cloud Serverless driver:

    import { connect } from '@tidbcloud/serverless';
    import { drizzle } from 'drizzle-orm/tidb-serverless';
    
    const client = connect({ url: '...' });
    const db = drizzle(client);
    await db.select().from(...);

0.31.1

04 Jun 14:57
3513d0a
Compare
Choose a tag to compare

New Features

Live Queries 🎉

For a full explanation about Drizzle + Expo welcome to discussions

As of v0.31.1 Drizzle ORM now has native support for Expo SQLite Live Queries!
We've implemented a native useLiveQuery React Hook which observes necessary database changes and automatically re-runs database queries. It works with both SQL-like and Drizzle Queries:

import { useLiveQuery, drizzle } from 'drizzle-orm/expo-sqlite';
import { openDatabaseSync } from 'expo-sqlite/next';
import { users } from './schema';
import { Text } from 'react-native';

const expo = openDatabaseSync('db.db', { enableChangeListener: true }); // <-- enable change listeners
const db = drizzle(expo);

const App = () => {
  // Re-renders automatically when data changes
  const { data } = useLiveQuery(db.select().from(users));

  // const { data, error, updatedAt } = useLiveQuery(db.query.users.findFirst());
  // const { data, error, updatedAt } = useLiveQuery(db.query.users.findMany());


  return <Text>{JSON.stringify(data)}</Text>;
};

export default App;

We've intentionally not changed the API of ORM itself to stay with conventional React Hook API, so we have useLiveQuery(databaseQuery) as opposed to db.select().from(users).useLive() or db.query.users.useFindMany()

We've also decided to provide data, error and updatedAt fields as a result of hook for concise explicit error handling following practices of React Query and Electric SQL

0.31.0

31 May 08:28
e922211
Compare
Choose a tag to compare

Breaking changes

Note: [email protected] can be used with [email protected] or higher. The same applies to Drizzle Kit. If you run a Drizzle Kit command, it will check and prompt you for an upgrade (if needed). You can check for Drizzle Kit updates. below

PostgreSQL indexes API was changed

The previous Drizzle+PostgreSQL indexes API was incorrect and was not aligned with the PostgreSQL documentation. The good thing is that it was not used in queries, and drizzle-kit didn't support all properties for indexes. This means we can now change the API to the correct one and provide full support for it in drizzle-kit

Previous API

  • No way to define SQL expressions inside .on.
  • .using and .on in our case are the same thing, so the API is incorrect here.
  • .asc(), .desc(), .nullsFirst(), and .nullsLast() should be specified for each column or expression on indexes, but not on an index itself.
// Index declaration reference
index('name')
  .on(table.column1, table.column2, ...) or .onOnly(table.column1, table.column2, ...)
  .concurrently()
  .using(sql``) // sql expression
  .asc() or .desc()
  .nullsFirst() or .nullsLast()
  .where(sql``) // sql expression

Current API

// First example, with `.on()`
index('name')
  .on(table.column1.asc(), table.column2.nullsFirst(), ...) or .onOnly(table.column1.desc().nullsLast(), table.column2, ...)
  .concurrently()
  .where(sql``)
  .with({ fillfactor: '70' })

// Second Example, with `.using()`
index('name')
  .using('btree', table.column1.asc(), sql`lower(${table.column2})`, table.column1.op('text_ops'))
  .where(sql``) // sql expression
  .with({ fillfactor: '70' })

New Features

🎉 "pg_vector" extension support

There is no specific code to create an extension inside the Drizzle schema. We assume that if you are using vector types, indexes, and queries, you have a PostgreSQL database with the pg_vector extension installed.

You can now specify indexes for pg_vector and utilize pg_vector functions for querying, ordering, etc.

Let's take a few examples of pg_vector indexes from the pg_vector docs and translate them to Drizzle

L2 distance, Inner product and Cosine distance

// CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);

const table = pgTable('items', {
    embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
    l2: index('l2_index').using('hnsw', table.embedding.op('vector_l2_ops'))
    ip: index('ip_index').using('hnsw', table.embedding.op('vector_ip_ops'))
    cosine: index('cosine_index').using('hnsw', table.embedding.op('vector_cosine_ops'))
}))

L1 distance, Hamming distance and Jaccard distance - added in pg_vector 0.7.0 version

// CREATE INDEX ON items USING hnsw (embedding vector_l1_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_hamming_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_jaccard_ops);

const table = pgTable('table', {
    embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
    l1: index('l1_index').using('hnsw', table.embedding.op('vector_l1_ops'))
    hamming: index('hamming_index').using('hnsw', table.embedding.op('bit_hamming_ops'))
    bit: index('bit_jaccard_index').using('hnsw', table.embedding.op('bit_jaccard_ops'))
}))

For queries, you can use predefined functions for vectors or create custom ones using the SQL template operator.

You can also use the following helpers:

import { l2Distance, l1Distance, innerProduct, 
          cosineDistance, hammingDistance, jaccardDistance } from 'drizzle-orm'

l2Distance(table.column, [3, 1, 2]) // table.column <-> '[3, 1, 2]'
l1Distance(table.column, [3, 1, 2]) // table.column <+> '[3, 1, 2]'

innerProduct(table.column, [3, 1, 2]) // table.column <#> '[3, 1, 2]'
cosineDistance(table.column, [3, 1, 2]) // table.column <=> '[3, 1, 2]'

hammingDistance(table.column, '101') // table.column <~> '101'
jaccardDistance(table.column, '101') // table.column <%> '101'

If pg_vector has some other functions to use, you can replicate implimentation from existing one we have. Here is how it can be done

export function l2Distance(
  column: SQLWrapper | AnyColumn,
  value: number[] | string[] | TypedQueryBuilder<any> | string,
): SQL {
  if (is(value, TypedQueryBuilder<any>) || typeof value === 'string') {
    return sql`${column} <-> ${value}`;
  }
  return sql`${column} <-> ${JSON.stringify(value)}`;
}

Name it as you wish and change the operator. This example allows for a numbers array, strings array, string, or even a select query. Feel free to create any other type you want or even contribute and submit a PR

Examples

Let's take a few examples of pg_vector queries from the pg_vector docs and translate them to Drizzle

import { l2Distance } from 'drizzle-orm';

// SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
db.select().from(items).orderBy(l2Distance(items.embedding, [3,1,2]))

// SELECT embedding <-> '[3,1,2]' AS distance FROM items;
db.select({ distance: l2Distance(items.embedding, [3,1,2]) })

// SELECT * FROM items ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
const subquery = db.select({ embedding: items.embedding }).from(items).where(eq(items.id, 1));
db.select().from(items).orderBy(l2Distance(items.embedding, subquery)).limit(5)

// SELECT (embedding <#> '[3,1,2]') * -1 AS inner_product FROM items;
db.select({ innerProduct: sql`(${maxInnerProduct(items.embedding, [3,1,2])}) * -1` }).from(items)

// and more!

🎉 New PostgreSQL types: point, line

You can now use point and line from PostgreSQL Geometric Types

Type point has 2 modes for mappings from the database: tuple and xy.

  • tuple will be accepted for insert and mapped on select to a tuple. So, the database Point(1,2) will be typed as [1,2] with drizzle.

  • xy will be accepted for insert and mapped on select to an object with x, y coordinates. So, the database Point(1,2) will be typed as { x: 1, y: 2 } with drizzle

const items = pgTable('items', {
 point: point('point'),
 pointObj: point('point_xy', { mode: 'xy' }),
});

Type line has 2 modes for mappings from the database: tuple and abc.

  • tuple will be accepted for insert and mapped on select to a tuple. So, the database Line{1,2,3} will be typed as [1,2,3] with drizzle.

  • abc will be accepted for insert and mapped on select to an object with a, b, and c constants from the equation Ax + By + C = 0. So, the database Line{1,2,3} will be typed as { a: 1, b: 2, c: 3 } with drizzle.

const items = pgTable('items', {
 line: line('line'),
 lineObj: point('line_abc', { mode: 'abc' }),
});

🎉 Basic "postgis" extension support

There is no specific code to create an extension inside the Drizzle schema. We assume that if you are using postgis types, indexes, and queries, you have a PostgreSQL database with the postgis extension installed.

geometry type from postgis extension:

const items = pgTable('items', {
  geo: geometry('geo', { type: 'point' }),
  geoObj: geometry('geo_obj', { type: 'point', mode: 'xy' }),
  geoSrid: geometry('geo_options', { type: 'point', mode: 'xy', srid: 4000 }),
});

mode
Type geometry has 2 modes for mappings from the database: tuple and xy.

  • tuple will be accepted for insert and mapped on select to a tuple. So, the database geometry will be typed as [1,2] with drizzle.
  • xy will be accepted for insert and mapped on select to an object with x, y coordinates. So, the database geometry will be typed as { x: 1, y: 2 } with drizzle

type

The current release has a predefined type: point, which is the geometry(Point) type in the PostgreSQL PostGIS extension. You can specify any string there if you want to use some other type

Drizzle Kit updates: [email protected]

Release notes here are partially duplicated from [email protected]

New Features

🎉 Support for new types

Drizzle Kit can now handle:

  • point and line from PostgreSQL
  • vector from the PostgreSQL pg_vector extension
  • geometry from the PostgreSQL PostGIS extension

🎉 New param in drizzle.config - extensionsFilters

The PostGIS extension creates a few internal tables in the public schema. This means that if you have a database with the PostGIS extension and use push or introspect, all those tables will be included in diff operations. In this case, you would need to specify tablesFilter, find all tables created by the extension, and list them in this parameter.

We have addressed this issue so that you won't need to take all these steps. Simply specify extensionsFilters with the name of the extension used, and Drizzle will skip all the necessary tables.

Currently, we only support the postgis option, but we plan to add more extensions if they create tables in the public schema.

The postgis option will skip the geography_columns, geometry_columns, and spatial_ref_sys tables

import { defineConfig } from 'drizzle-kit'

export default defaultConfig({
  dialect: "postgresql",
  extensionsFilters: ["postgis"],
})

Improvements

Update zod schemas for database credentials and write tests to all the positive/negative cases

  • support full set of SSL params in kit config, provide types from node:tls connection
import { defineConfig } from 'drizzle-kit'

export ...
Read more

v0.31.0-beta

23 May 16:24
7a05232
Compare
Choose a tag to compare
v0.31.0-beta Pre-release
Pre-release

Breaking changes

PostgreSQL indexes API was changed

The previous Drizzle+PostgreSQL indexes API was incorrect and was not aligned with the PostgreSQL documentation. The good thing is that it was not used in queries, and drizzle-kit didn't support all properties for indexes. This means we can now change the API to the correct one and provide full support for it in drizzle-kit

Previous API

  • No way to define SQL expressions inside .on.
  • .using and .on in our case are the same thing, so the API is incorrect here.
  • .asc(), .desc(), .nullsFirst(), and .nullsLast() should be specified for each column or expression on indexes, but not on an index itself.
// Index declaration reference
index('name')
  .on(table.column1, table.column2, ...) or .onOnly(table.column1, table.column2, ...)
  .concurrently()
  .using(sql``) // sql expression
  .asc() or .desc()
  .nullsFirst() or .nullsLast()
  .where(sql``) // sql expression

Current API

// First example, with `.on()`
index('name')
  .on(table.column1.asc(), table.column2.nullsFirst(), ...) or .onOnly(table.column1.desc().nullsLast(), table.column2, ...)
  .concurrently()
  .where(sql``)
  .with({ fillfactor: '70' })

// Second Example, with `.using()`
index('name')
  .using('btree', table.column1.asc(), sql`lower(${table.column2})`, table.column1.op('text_ops'))
  .where(sql``) // sql expression
  .with({ fillfactor: '70' })

New Features

🎉 "pg_vector" extension support

There is no specific code to create an extension inside the Drizzle schema. We assume that if you are using vector types, indexes, and queries, you have a PostgreSQL database with the pg_vector extension installed.

You can now specify indexes for pg_vector and utilize pg_vector functions for querying, ordering, etc.

Let's take a few examples of pg_vector indexes from the pg_vector docs and translate them to Drizzle

L2 distance, Inner product and Cosine distance

// CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);
// CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);

const table = pgTable('items', {
    embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
    l2: index('l2_index').using('hnsw', table.embedding.op('vector_l2_ops'))
    ip: index('ip_index').using('hnsw', table.embedding.op('vector_ip_ops'))
    cosine: index('cosine_index').using('hnsw', table.embedding.op('vector_cosine_ops'))
}))

L1 distance, Hamming distance and Jaccard distance - added in pg_vector 0.7.0 version

// CREATE INDEX ON items USING hnsw (embedding vector_l1_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_hamming_ops);
// CREATE INDEX ON items USING hnsw (embedding bit_jaccard_ops);

const table = pgTable('table', {
    embedding: vector('embedding', { dimensions: 3 })
}, (table) => ({
    l1: index('l1_index').using('hnsw', table.embedding.op('vector_l1_ops'))
    hamming: index('hamming_index').using('hnsw', table.embedding.op('bit_hamming_ops'))
    bit: index('bit_jaccard_index').using('hnsw', table.embedding.op('bit_jaccard_ops'))
}))

For queries, you can use predefined functions for vectors or create custom ones using the SQL template operator.

You can also use the following helpers:

import { l2Distance, l1Distance, innerProduct, 
          cosineDistance, hammingDistance, jaccardDistance } from 'drizzle-orm'

l2Distance(table.column, [3, 1, 2]) // table.column <-> '[3, 1, 2]'
l1Distance(table.column, [3, 1, 2]) // table.column <+> '[3, 1, 2]'

innerProduct(table.column, [3, 1, 2]) // table.column <#> '[3, 1, 2]'
cosineDistance(table.column, [3, 1, 2]) // table.column <=> '[3, 1, 2]'

hammingDistance(table.column, '101') // table.column <~> '101'
jaccardDistance(table.column, '101') // table.column <%> '101'

If pg_vector has some other functions to use, you can replicate implimentation from existing one we have. Here is how it can be done

export function l2Distance(
  column: SQLWrapper | AnyColumn,
  value: number[] | string[] | TypedQueryBuilder<any> | string,
): SQL {
  if (is(value, TypedQueryBuilder<any>) || typeof value === 'string') {
    return sql`${column} <-> ${value}`;
  }
  return sql`${column} <-> ${JSON.stringify(value)}`;
}

Name it as you wish and change the operator. This example allows for a numbers array, strings array, string, or even a select query. Feel free to create any other type you want or even contribute and submit a PR

Examples

Let's take a few examples of pg_vector queries from the pg_vector docs and translate them to Drizzle

import { l2Distance } from 'drizzle-orm';

// SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
db.select().from(items).orderBy(l2Distance(items.embedding, [3,1,2]))

// SELECT embedding <-> '[3,1,2]' AS distance FROM items;
db.select({ distance: l2Distance(items.embedding, [3,1,2]) })

// SELECT * FROM items ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
const subquery = db.select({ embedding: items.embedding }).from(items).where(eq(items.id, 1));
db.select().from(items).orderBy(l2Distance(items.embedding, subquery)).limit(5)

// SELECT (embedding <#> '[3,1,2]') * -1 AS inner_product FROM items;
db.select({ innerProduct: sql`(${maxInnerProduct(items.embedding, [3,1,2])}) * -1` }).from(items)

// and more!

0.30.10

01 May 14:10
a78eefe
Compare
Choose a tag to compare

New Features

🎉 .if() function added to all WHERE expressions

Select all users after cursors if a cursor value was provided

async function someFunction(categories: string[] = [], views = 0) {
  await db
    .select()
    .from(users)
    .where(
       and(
          gt(posts.views, views).if(views > 100),
          inArray(posts.category, categories).if(categories.length > 0),
       ),
    );
}

Bug Fixes

  • Fixed internal mappings for sessions .all, .values, .execute functions in AWS DataAPI

0.30.9

21 Apr 12:56
e0aaeb2
Compare
Choose a tag to compare
  • 🐛 Fixed migrator in AWS Data API
  • Added setWhere and targetWhere fields to .onConflictDoUpdate() config in SQLite instead of single where field
  • 🛠️ Added schema information to Drizzle instances via db._.fullSchema

0.30.8

11 Apr 07:27
4706ad1
Compare
Choose a tag to compare
  • 🎉 Added custom schema support to enums in Postgres (fixes #669 via #2048):

⚠️ Only available in drizzle-orm for now, drizzle-kit support will arrive soon

import { pgSchema } from 'drizzle-orm/pg-core';

const mySchema = pgSchema('mySchema');
const colors = mySchema.enum('colors', ['red', 'green', 'blue']);
  • 🎉 Changed D1 migrate() function to use batch API (#2137)
  • 🐛 Split where clause in Postgres .onConflictDoUpdate method into setWhere and targetWhere clauses, to support both where cases in on conflict ... clause (fixes #1628, #1302 via #2056)
  • 🐛 Fixed query generation for where clause in Postgres .onConflictDoNothing method, as it was placed in a wrong spot (fixes #1628 via #2056)
  • 🐛 Fixed multiple issues with AWS Data API driver (fixes #1931, #1932, #1934, #1936 via #2119)
  • 🐛 Fix inserting and updating array values in AWS Data API (fixes #1912 via #1911)

Thanks @hugo082 and @livingforjesus!

0.30.7

03 Apr 12:02
76eb060
Compare
Choose a tag to compare

Bug fixes

  • Add mappings for @vercel/postgres package
  • Fix interval mapping for neon drivers - #1542