-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathunit tests.do
248 lines (196 loc) · 13.1 KB
/
unit tests.do
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
cap cd "D:\OneDrive\Documents\Work\Econometrics\Wild cluster"
cap cd "/mnt/d/OneDrive/Documents/Work/Econometrics/Wild cluster"
set more off
set rmsg off
set trace off
set linesize 200
cap set processors 4
cap program drop myprobit
program myprobit // custom likelihood evaluator
args lnf theta
quietly replace `lnf' = lnnormal((2*$ML_y1-1) * `theta')
end
cap log close
qui log using "D:\OneDrive\Documents\Macros\boottest\unit tests.log", replace
version 13
set seed 0193284710
foreach julia in "" julia {
use collapsed, clear
qui regress hasinsurance selfemployed post post_self, cluster(year)
boottest post_self=.04, `julia' nogr
boottest post_self=.04, `julia' weight(webb) noci
boottest post_self=.04, `julia' weight(webb) jk nogr
boottest post_self=.04, `julia' weight(webb) jk nogr nonull
scoretest post_self=.04, `julia' nogr
boottest post_self post, `julia' reps(999) weight(webb) nogr // wild bootstrap test of joint null, Webb weights, null imposed, 9,999 replications
boottest (post_self) (post), `julia' reps(999) weight(webb) nogr // same
boottest {post_self=.04} {post}, `julia' nogr // separate tests, no correction for multiple hypotheses
boottest {(post) (post_self=.04)} {(post) (post_self=.08)}, `julia' madj(sidak) nogr // separate tests, Sidak correction for multiple hypotheses
use nlsw88
qui regress wage tenure ttl_exp collgrad, cluster(industry)
boottest tenure, `julia' svmat nogr // wild bootstrap test of joint null, Rademacher weights, null imposed, saving simulated distribution
constraint 1 ttl_exp = .2
qui cnsreg wage tenure ttl_exp collgrad, constr(1) cluster(industry)
boottest tenure, `julia' nogr // wild bootstrap test of tenure=0, conditional on ttl_exp=2, Rademacher weights, null imposed, 999 replications
regress wage tenure ttl_exp collgrad south#union, cluster(industry)
margins south
boottest, `julia' margins nogr // bootstrap CI of average predicted wage for south = 0 and 1
margins, dydx(south)
boottest, `julia' margins graphopt(xtitle(Average effect of south)) nogr // bootstrap CI of average impact in sample of changing south from 0 to 1
qui ivregress 2sls wage ttl_exp collgrad (tenure = union), cluster(industry)
boottest tenure, `julia' ptype(equaltail) seed(987654321) nogr // Wald test, wild restricted efficient bootstrap, Rademacher weights, null imposed, 999 reps
boottest tenure, `julia' ptype(equaltail) seed(987654321) stat(c) nogr // same but bootstrap-c
boottest tenure, `julia' ptype(equaltail) seed(987654321) stat(c) gridmin(-2) gridmax(2) nogr // same but limit graphing range
boottest, `julia' ar nogr // same bootstrap, but Anderson-Rubin test (much faster)
scoretest tenure, `julia' nogr // Rao/LM test of same
waldtest tenure, `julia' nogr // Wald test of same
qui ivregress liml wage (tenure = collgrad ttl_exp), cluster(industry)
boottest tenure, `julia' noci // WRE bootstrap, Rademacher weights, 999 replications
boottest tenure, `julia' noci jk // WRE bootstrap, Rademacher weights, 999 replications
qui cmp (wage = tenure) (tenure = collgrad ttl_exp), ind(1 1) qui nolr cluster(industry)
boottest tenure, `julia' // reasonable match on test statistic and p value
qui ivreg2 wage collgrad smsa race age (tenure = union married), cluster(industry) fuller(1)
boottest tenure, `julia' nograph // Wald test, WRE bootstrap, Rademacher weights, 999 replications
boottest tenure, `julia' nograph jk // Wald test, WRE bootstrap, Rademacher weights, 999 replications
boottest, `julia' nograph ar // same, but Anderson-Rubin (faster, but CI misleading if instruments invalid)
qui ivregress liml wage (collgrad tenure = ttl_exp union), cluster(industry)
boottest, `julia' ar nogr // Anderson-Rubin test, with contour plot of p value surface
boottest, `julia' ar nogr jk // Anderson-Rubin test, with contour plot of p value surface
boottest collgrad tenure, `julia' gridpoints(10 10) nogr // WRE boostrap also with contour plot
qui regress wage tenure ttl_exp collgrad, robust // no clustering
boottest tenure, `julia' nogr
boottest tenure, `julia' nogr jk
qui ivregress liml wage (collgrad tenure = ttl_exp union), robust // no clustering
boottest, `julia' ar nogr
boottest collgrad tenure, `julia' gridpoints(10 10) nogr
qui regress wage ttl_exp collgrad tenure, cluster(industry)
waldtest collgrad tenure, cluster(industry age) nogr // multi-way-clustered tests after estimation command not offering such
boottest tenure, `julia' cluster(industry age) bootcluster(industry) gridmin(-.2) gridmax(.2) nogr
qui areg wage ttl_exp collgrad tenure [aw=hours] if occupation<., cluster(age) absorb(industry)
boottest tenure, `julia' cluster(age occupation) bootcluster(occupation) seed(999) nograph // override estimate's clustering
boottest tenure, `julia' cluster(age occupation) bootcluster(occupation) seed(999) nograph jk // override estimate's clustering
qui reg wage ttl_exp collgrad tenure i.industry [aw=hours] if occupation<., cluster(age)
boottest tenure, `julia' cluster(age occupation) bootcluster(occupation) seed(999) nograph // should match previous result
boottest tenure, `julia' cluster(age occupation) bootcluster(occupation) seed(999) nograph jk // should match previous result
qui probit c_city tenure wage ttl_exp collgrad, cluster(industry)
boottest tenure, `julia' nogr // score bootstrap, Rademacher weights, null imposed, 999 replications
boottest tenure, `julia' cluster(industry age) bootcluster(industry) small nogr // multi-way-clustered, finite-sample-corrected test with score bootstrap
qui gsem (c_city <- tenure wage ttl_exp collgrad), vce(cluster industry) probit // same probit estimate as previous
boottest tenure, `julia' // requires Stata 14.0 or later
boottest tenure, `julia' cluster(industry age) bootcluster(industry) small // requires Stata 14.0 or later
sysuse auto, clear
ml model lf myprobit (foreign = mpg weight) // define model
qui ml max // estimate
boottest mpg, `julia' cmdline(ml model lf myprobit (foreign = mpg weight))
probit foreign i.mpg
scoretest 14.mpg
use collapsed, clear
qui regress hasinsurance selfemployed post post_self, cluster(year)
boottest post_self=.04, `julia' weight(webb) nogr
boottest post_self=.04, `julia' weight(webb) reps(9999999) noci
boottest post_self=.04, `julia' weight(normal) reps(9999) noci
boottest post_self=.04, `julia' weight(gamma) reps(9999) noci svv
boottest post_self=.04, `julia' weight(mammen) reps(9999) noci
boottest post_self=.04, `julia' weight(mammen) reps(9999) boottype(score) nogr
qui regress hasinsurance selfemployed post post_self, robust
boottest post_self=.04, `julia' weight(webb) nogr
qui regress hasinsurance selfemployed post post_self, cluster(year)
boottest (post_self=.05) (post=-.02), `julia' reps(9999) weight(webb) nogr
boottest (post_self=.05) (post=-.02) (selfemployed=-.15), `julia' reps(9999) weight(webb) nogr
qui regress hasinsurance selfemployed post post_self
boottest post_self=.04, `julia' weight(webb) nogr
boottest (post_self=.05) (post=-.02), `julia' reps(9999) weight(webb) nogr
scoretest (post_self=.05), `julia' nogr
scoretest (post_self=.05) (post=-.02), `julia' nogr
boottest (post_self=.08), `julia' boottype(score) reps(9999) nogr
boottest (post_self=.05) (post=-.02), `julia' boottype(score) reps(9999) nogr
use nlsw88, clear
constraint 1 ttl_exp = .2
qui cnsreg wage tenure ttl_exp collgrad, constr(1) cluster(industry)
boottest tenure, `julia' nogr
keep if e(sample)
gen id = _n - cond(_n>1000, 1000, 0)
qui cnsreg wage tenure ttl_exp collgrad, constr(1) cluster(id) // granular but not pure robust
boottest tenure, `julia' reps(9999) nogr
qui areg wage tenure ttl_exp collgrad, cluster(id) a(industry)
boottest tenure, `julia' reps(9999) nogr
use d:\OneDrive\Documents\Macros\nlsw88, clear
qui ivregress liml wage ttl_exp collgrad (tenure = union), cluster(industry)
boottest tenure, `julia' ptype(equaltail) reps(9999) nogr
boottest tenure, `julia' nonull reps(99999) matsize(.1) nogr
boottest tenure, `julia' ptype(upper) svmat(t) reps(9999) nogr
boottest tenure, `julia' ptype(lower) svmat(numer) reps(9999) nogr
qui ivregress liml wage ttl_exp collgrad (tenure = union), cluster(industry)
boottest tenure, `julia' ptype(equaltail) reps(9999) nogr
qui ivregress liml wage ttl_exp collgrad (tenure = union) if industry<., robust
boottest tenure, `julia' ptype(equaltail) reps(99) noci
qui ivregress liml wage ttl_exp collgrad (tenure = union) if industry<., robust
boottest tenure, ptype(equaltail) reps(99) noci
boottest collgrad tenure, `julia' ptype(equaltail) reps(99) noci
qui ivregress 2sls wage ttl_exp collgrad (tenure = union) if industry<.
boottest tenure, `julia' ptype(equaltail) reps(99) noci
boottest tenure collgrad, `julia' ptype(equaltail) reps(99) noci
qui ivregress 2sls wage ttl_exp collgrad (tenure = union), cluster(industry)
boottest tenure, `julia' ptype(equaltail) weight(webb) stat(c) gridmin(-5) gridmax(5) gridpoints(100) nogr
boottest tenure, `julia' ptype(equaltail) weight(webb) stat(c) gridmin(-5) gridmax(5) gridpoints(100) matsize(.01) nogr
qui ivregress 2sls wage ttl_exp collgrad (tenure = union) if industry<., robust
boottest tenure, `julia' ptype(equaltail) matsize(.005) noci weight(webb)
preserve
keep if e(sample)
gen id = _n - cond(_n>1000, 1000, 0)
boottest tenure, `julia' cluster(id) ptype(equaltail) matsize(.005) noci weight(webb)
restore
qui ivregress 2sls wage ttl_exp collgrad (tenure = union), cluster(industry)
boottest, `julia' ar nogr
boottest, `julia' ar nonull nogr
scoretest tenure, `julia' nogr
waldtest tenure, `julia' ptype(upper) nogr
qui ivregress liml wage (tenure = collgrad ttl_exp), cluster(industry)
boottest tenure, `julia' nogr
qui ivreg2 wage collgrad smsa race age (tenure = union married), cluster(industry) fuller(1)
boottest tenure, `julia' nograph weight(webb) reps(9999)
qui gen individual = _n
boottest tenure, `julia' noci bootcluster(individual) weight(webb)
boottest tenure, `julia' nograph bootcluster(collgrad) cluster(collgrad industry) weight(webb) reps(9999)
qui areg wage ttl_exp collgrad tenure [aw=hours] if occupation<. & grade<. & union<., cluster(age) absorb(industry)
boottest tenure, `julia' nograph cluster(age occupation) bootcluster(occupation)
qui areg wage ttl_exp collgrad tenure if occupation<. & grade<. & union<. & hours<., robust absorb(industry)
boottest tenure, `julia' nograph
qui areg wage ttl_exp collgrad tenure [aw=hours] if occupation<. & grade<. & union<., robust absorb(industry)
boottest tenure, `julia' nograph
qui ivreghdfe wage ttl_exp collgrad tenure (occupation = union married) [aw=hours] if grade<., liml cluster(industry) absorb(industry)
boottest tenure, `julia' nograph
boottest occupation, `julia' nograph
qui ivreghdfe wage ttl_exp collgrad tenure (occupation = union married) [aw=hours] if grade<., liml cluster(industry) absorb(age)
boottest tenure, `julia' nograph
boottest collgrad tenure, `julia' nograph
boottest occupation, `julia' gridmin(-1) gridmax(1) nograph
constraint 1 [wage]collgrad
qui ivreghdfe wage ttl_exp /*collgrad*/ tenure (occupation = union married) [aw=hours], liml cluster(industry) absorb(age) // approximate contrained LIML with ivreghdfe
boottest tenure, `julia' nograph
use d:\OneDrive\Documents\Macros\abdata, clear
qui areg n w k, absorb(ind)
boottest k, `julia' cluster(id year) nograph
qui areg n w k [aw=ys], absorb(ind)
boottest k, `julia' cluster(id year) nograph
use pixel-level-baseline-final, clear
global pix lnkm pixpetro pixdia pixwaterd pixcapdist pixmal pixsead pixsuit pixelev pixbdist
global geo lnwaterkm lnkm2split mean_elev mean_suit malariasuit petroleum diamondd
global poly capdistance1 seadist1 borderdist1
qui encode pixwbcode, gen(ccode) // make numerical country identifier
qui areg lnl0708s centr_tribe lnpd0 \$pix \$geo \$poly, absorb(ccode)
boottest centr_tribe, `julia' nogr reps(999) clust(ccode pixcluster) bootcluster(ccode)
boottest centr_tribe, `julia' nogr reps(999) clust(ccode pixcluster) bootcluster(pixcluster)
boottest centr_tribe, `julia' nogr reps(999) clust(ccode pixcluster) bootcluster(ccode pixcluster)
infile coll merit male black asian year state chst using regm.raw, clear
qui regress coll merit male black asian i.year i.state if !inlist(state,34,57,59,61,64,71,72,85,88), cluster(state)
generate individual = _n // unique ID for each observation
boottest merit, `julia' nogr reps(999) gridpoints(10) // defaults to bootcluster(state)
boottest merit, `julia' nogr reps(999) gridpoints(10) nonull
boottest merit, `julia' nogr reps(999) gridpoints(10) bootcluster(state year)
boottest merit, `julia' nogr reps(999) gridpoints(10) nonull bootcluster(state year)
boottest merit, `julia' nogr reps(999) gridpoints(10) bootcluster(individual)
boottest merit, `julia' nogr reps(999) gridpoints(10) nonull bootcluster(individual)
boottest merit, `julia' nogr reps(999) gridpoints(10) nonull bootcluster(individual) matsize(.1)
}
qui log close