-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathrun_cpd.py
186 lines (151 loc) · 7.29 KB
/
run_cpd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--models-dir', metavar='PATH', default='./models/',
help='directory to save trained models, default=./models/')
parser.add_argument('--num-workers', metavar='N', type=int, default=4,
help='number of threads for loading data, default=4')
parser.add_argument('--max-nodes', metavar='N', type=int, default=3000,
help='max number of nodes per batch, default=3000')
parser.add_argument('--epochs', metavar='N', type=int, default=100,
help='training epochs, default=100')
parser.add_argument('--cath-data', metavar='PATH', default='./data/chain_set.jsonl',
help='location of CATH dataset, default=./data/chain_set.jsonl')
parser.add_argument('--cath-splits', metavar='PATH', default='./data/chain_set_splits.json',
help='location of CATH split file, default=./data/chain_set_splits.json')
parser.add_argument('--ts50', metavar='PATH', default='./data/ts50.json',
help='location of TS50 dataset, default=./data/ts50.json')
parser.add_argument('--train', action="store_true", help="train a model")
parser.add_argument('--test-r', metavar='PATH', default=None,
help='evaluate a trained model on recovery (without training)')
parser.add_argument('--test-p', metavar='PATH', default=None,
help='evaluate a trained model on perplexity (without training)')
parser.add_argument('--n-samples', metavar='N', default=100,
help='number of sequences to sample (if testing recovery), default=100')
args = parser.parse_args()
assert sum(map(bool, [args.train, args.test_p, args.test_r])) == 1, \
"Specify exactly one of --train, --test_r, --test_p"
import torch
import torch.nn as nn
import gvp.data, gvp.models
from datetime import datetime
import tqdm, os, json
import numpy as np
from sklearn.metrics import confusion_matrix
import torch_geometric
from functools import partial
print = partial(print, flush=True)
node_dim = (100, 16)
edge_dim = (32, 1)
device = "cuda" if torch.cuda.is_available() else "cpu"
if not os.path.exists(args.models_dir): os.makedirs(args.models_dir)
model_id = int(datetime.timestamp(datetime.now()))
dataloader = lambda x: torch_geometric.data.DataLoader(x,
num_workers=args.num_workers,
batch_sampler=gvp.data.BatchSampler(
x.node_counts, max_nodes=args.max_nodes))
def main():
model = gvp.models.CPDModel((6, 3), node_dim, (32, 1), edge_dim).to(device)
print("Loading CATH dataset")
cath = gvp.data.CATHDataset(path="data/chain_set.jsonl",
splits_path="data/chain_set_splits.json")
trainset, valset, testset = map(gvp.data.ProteinGraphDataset,
(cath.train, cath.val, cath.test))
if args.test_r or args.test_p:
ts50set = gvp.data.ProteinGraphDataset(json.load(open(args.ts50)))
model.load_state_dict(torch.load(args.test_r or args.test_p))
if args.test_r:
print("Testing on CATH testset"); test_recovery(model, testset)
print("Testing on TS50 set"); test_recovery(model, ts50set)
elif args.test_p:
print("Testing on CATH testset"); test_perplexity(model, testset)
print("Testing on TS50 set"); test_perplexity(model, ts50set)
elif args.train:
train(model, trainset, valset, testset)
def train(model, trainset, valset, testset):
train_loader, val_loader, test_loader = map(dataloader,
(trainset, valset, testset))
optimizer = torch.optim.Adam(model.parameters())
best_path, best_val = None, np.inf
lookup = train_loader.dataset.num_to_letter
for epoch in range(args.epochs):
model.train()
loss, acc, confusion = loop(model, train_loader, optimizer=optimizer)
path = f"{args.models_dir}/{model_id}_{epoch}.pt"
torch.save(model.state_dict(), path)
print(f'EPOCH {epoch} TRAIN loss: {loss:.4f} acc: {acc:.4f}')
print_confusion(confusion, lookup=lookup)
model.eval()
with torch.no_grad():
loss, acc, confusion = loop(model, val_loader)
print(f'EPOCH {epoch} VAL loss: {loss:.4f} acc: {acc:.4f}')
print_confusion(confusion, lookup=lookup)
if loss < best_val:
best_path, best_val = path, loss
print(f'BEST {best_path} VAL loss: {best_val:.4f}')
print(f"TESTING: loading from {best_path}")
model.load_state_dict(torch.load(best_path))
model.eval()
with torch.no_grad():
loss, acc, confusion = loop(model, test_loader)
print(f'TEST loss: {loss:.4f} acc: {acc:.4f}')
print_confusion(confusion,lookup=lookup)
def test_perplexity(model, dataset):
model.eval()
with torch.no_grad():
loss, acc, confusion = loop(model, dataloader(dataset))
print(f'TEST perplexity: {np.exp(loss):.4f}')
print_confusion(confusion, lookup=dataset.num_to_letter)
def test_recovery(model, dataset):
recovery = []
for protein in tqdm.tqdm(dataset):
protein = protein.to(device)
h_V = (protein.node_s, protein.node_v)
h_E = (protein.edge_s, protein.edge_v)
sample = model.sample(h_V, protein.edge_index,
h_E, n_samples=args.n_samples)
recovery_ = sample.eq(protein.seq).float().mean().cpu().numpy()
recovery.append(recovery_)
print(protein.name, recovery_, flush=True)
recovery = np.median(recovery)
print(f'TEST recovery: {recovery:.4f}')
def loop(model, dataloader, optimizer=None):
confusion = np.zeros((20, 20))
t = tqdm.tqdm(dataloader)
loss_fn = nn.CrossEntropyLoss()
total_loss, total_correct, total_count = 0, 0, 0
for batch in t:
if optimizer: optimizer.zero_grad()
batch = batch.to(device)
h_V = (batch.node_s, batch.node_v)
h_E = (batch.edge_s, batch.edge_v)
logits = model(h_V, batch.edge_index, h_E, seq=batch.seq)
logits, seq = logits[batch.mask], batch.seq[batch.mask]
loss_value = loss_fn(logits, seq)
if optimizer:
loss_value.backward()
optimizer.step()
num_nodes = int(batch.mask.sum())
total_loss += float(loss_value) * num_nodes
total_count += num_nodes
pred = torch.argmax(logits, dim=-1).detach().cpu().numpy()
true = seq.detach().cpu().numpy()
total_correct += (pred == true).sum()
confusion += confusion_matrix(true, pred, labels=range(20))
t.set_description("%.5f" % float(total_loss/total_count))
torch.cuda.empty_cache()
return total_loss / total_count, total_correct / total_count, confusion
def print_confusion(mat, lookup):
counts = mat.astype(np.int32)
mat = (counts.T / counts.sum(axis=-1, keepdims=True).T).T
mat = np.round(mat * 1000).astype(np.int32)
res = '\n'
for i in range(20):
res += '\t{}'.format(lookup[i])
res += '\tCount\n'
for i in range(20):
res += '{}\t'.format(lookup[i])
res += '\t'.join('{}'.format(n) for n in mat[i])
res += '\t{}\n'.format(sum(counts[i]))
print(res)
if __name__== "__main__":
main()