-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathui.js
191 lines (169 loc) · 6.01 KB
/
ui.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import * as tfvis from "@tensorflow/tfjs-vis";
const statusElement = document.getElementById("status");
const messageElement = document.getElementById("message");
const imagesElement = document.getElementById("images");
const visualiseElement = document.getElementById("log");
export function logStatus(message) {
statusElement.innerText = message;
}
export function logVisualise(message) {
visualiseElement.innerText = message;
}
export function trainingLog(message) {
messageElement.innerText = `${message}\n`;
console.log(message);
}
export function showTestResults(batch, predictions, labels) {
const testExamples = batch.xs.shape[0];
imagesElement.innerHTML = "";
for (let i = 0; i < testExamples; i++) {
const image = batch.xs.slice([i, 0], [1, batch.xs.shape[1]]);
const div = document.createElement("div");
div.className = "pred-container";
const canvas = document.createElement("canvas");
canvas.className = "prediction-canvas";
draw(image.flatten(), canvas);
const pred = document.createElement("div");
const prediction = predictions[i];
const label = labels[i];
const correct = prediction === label;
pred.className = `pred ${correct ? "pred-correct" : "pred-incorrect"}`;
pred.innerText = `pred: ${prediction}`;
div.appendChild(pred);
div.appendChild(canvas);
imagesElement.appendChild(div);
}
}
export function showLayer(output, div) {
div.innerHTML = "";
const numfilters = output.shape[3];
const size = output.shape[1];
for (let i = 0; i < numfilters; i++) {
const image = output.slice([0, 0, 0, i], [1, size, size, 1]);
const canvas = document.createElement("canvas");
canvas.className = "layer-canvas";
canvas.style.marginTop = "1em";
canvas.style.marginBottom = "1em";
show(image.flatten(), canvas, size);
div.appendChild(canvas);
}
}
export function showDense(output, div) {
div.innerHTML = "";
const numunits = output.shape[1];
for (let i = 0; i < numunits; i++) {
const unit = output.slice([0, i], [1, 1]);
const canvas = document.createElement("canvas");
canvas.className = "layer-canvas";
canvas.style.marginTop = "1em";
canvas.style.marginBottom = "1em";
showFC(unit.flatten(), canvas);
div.appendChild(canvas);
}
}
const lossLabelElement = document.getElementById("loss-label");
const accuracyLabelElement = document.getElementById("accuracy-label");
const lossValues = [
[],
[]
];
export function plotLoss(batch, loss, set) {
const series = set === "train" ? 0 : 1;
lossValues[series].push({ x: batch, y: loss });
const lossContainer = document.getElementById("loss-canvas");
tfvis.render.linechart(
lossContainer, { values: lossValues, series: ["train", "validation"] }, {
xLabel: "Batch #",
yLabel: "Loss",
width: 400,
height: 300,
}
);
lossLabelElement.innerText = `Last Loss: ${loss.toFixed(3)}`;
}
const accuracyValues = [
[],
[]
];
export function plotAccuracy(batch, accuracy, set) {
const accuracyContainer = document.getElementById("accuracy-canvas");
const series = set === "train" ? 0 : 1;
accuracyValues[series].push({ x: batch, y: accuracy });
tfvis.render.linechart(
accuracyContainer, { values: accuracyValues, series: ["train", "validation"] }, {
xLabel: "Batch #",
yLabel: "Accuracy",
width: 400,
height: 300,
}
);
accuracyLabelElement.innerText = `Last Accuracy: ${(accuracy * 100).toFixed(
1
)}%`;
}
export function show(image, canvas, size) {
const [width, height] = [size, size];
canvas.width = 4.5 * width;
canvas.height = 4.5 * height;
const ctx = canvas.getContext("2d");
const imageData = new ImageData(width, height);
const data = image.dataSync();
for (let i = 0; i < height * width; ++i) {
const j = i * 4;
imageData.data[j + 0] = data[i] * 255;
imageData.data[j + 1] = data[i] * 255;
imageData.data[j + 2] = data[i] * 255;
imageData.data[j + 3] = 255;
}
ctx.putImageData(imageData, 0, 0);
ctx.drawImage(canvas, 0, 0, 4 * canvas.width, 4 * canvas.height);
}
export function showFC(unit, canvas) {
const [width, height] = [1, 1];
canvas.width = 10 * width;
canvas.height = 10 * height;
const ctx = canvas.getContext("2d");
const imageData = new ImageData(width, height);
const data = unit.dataSync();
imageData.data[0] = data[0] * 255;
imageData.data[1] = data[0] * 255;
imageData.data[2] = data[0] * 255;
imageData.data[3] = 255;
ctx.putImageData(imageData, 0, 0);
ctx.drawImage(canvas, 0, 0, 4 * canvas.width, 4 * canvas.height);
}
export function draw(image, canvas) {
const [width, height] = [28, 28];
canvas.width = width;
canvas.height = height;
const ctx = canvas.getContext("2d");
const imageData = new ImageData(width, height);
const data = image.dataSync();
for (let i = 0; i < height * width; ++i) {
const j = i * 4;
imageData.data[j + 0] = data[i] * 255;
imageData.data[j + 1] = data[i] * 255;
imageData.data[j + 2] = data[i] * 255;
imageData.data[j + 3] = 255;
}
ctx.putImageData(imageData, 0, 0);
}
export function getTrainEpochs() {
return Number.parseInt(document.getElementById("train-epochs").value);
}
export function getLearningRate() {
return Number.parseFloat(document.getElementById("learning-rate").value);
}
export function getBatchSize() {
return Number.parseInt(document.getElementById("batch-size").value);
}
export function getOptimizer() {
return document.getElementById("optimizer").value;
}
export function setTrainButtonCallback(callback) {
const trainButton = document.getElementById("train");
trainButton.addEventListener("click", () => {
trainButton.setAttribute("disabled", true);
callback();
});
}