-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcombine_reads.c
687 lines (584 loc) · 19.4 KB
/
combine_reads.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/*
* combine_reads.c: This file contains the code implementing the core algorithm
* to combine reads in FLASH.
*/
/*
* Copyright (C) 2012 Tanja Magoc
* Copyright (C) 2012, 2013, 2014 Eric Biggers
*
* This file is part of FLASH, a fast tool to merge overlapping paired-end
* reads.
*
* FLASH is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version.
*
* FLASH is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with FLASH; if not, see http://www.gnu.org/licenses/.
*/
#include "combine_reads.h"
#include "read.h"
#include "util.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#if defined(__GNUC__) && defined(__SSE2__)
# define WITH_SSE2
#endif
#ifdef WITH_SSE2
# include <xmmintrin.h>
# include <emmintrin.h>
#endif
#ifdef WITH_SSE2
/* Sum the values an 8 x 8 bit vector and return a 32-bit result. */
static inline uint32_t
hsum32_v8(__m128i v)
{
v = _mm_sad_epu8(v, _mm_set1_epi8(0));
return (uint32_t)_mm_extract_epi16(v, 0) +
(uint32_t)_mm_extract_epi16(v, 4);
}
/* Sum the values an 8 x 16 bit vector and return a 32-bit result. */
static inline uint32_t
hsum32_v16(__m128i v)
{
__m128i mask = _mm_set1_epi32(0x0000ffff);
v = _mm_add_epi32(v & mask, _mm_srli_si128(v, 2) & mask);
v = _mm_add_epi32(v, _mm_srli_si128(v, 4));
v = _mm_add_epi32(v, _mm_srli_si128(v, 8));
return _mm_cvtsi128_si32(v);
}
#endif /* WITH_SSE2 */
/*
* Compute mismatch statistics between two sequences.
*
* @seq_1, @seq_2:
* The two sequences to compare (ASCII characters A, C, G, T, N).
* @qual_1, @qual_2:
* Quality scores for the two sequences, based at 0.
* @haveN
* As an optimization, this can be set to %false to indicate that neither
* sequence contains an uncalled base (represented as an N character).
* @len_p
* Pointer to the length of the sequence. This value will be updated to
* subtract the number of positions at which an uncalled base (N) exists in
* either sequence.
* @num_mismatches_ret
* Location into which to return the number of positions at which the bases
* were mismatched.
* @mismatch_qual_total_ret
* Location into which to return the sum of lesser quality scores at
* mismatch sites.
*/
static inline void
compute_mismatch_stats(const char * restrict seq_1,
const char * restrict seq_2,
const char * restrict qual_1,
const char * restrict qual_2,
bool haveN,
int * restrict len_p,
unsigned * restrict num_mismatches_ret,
unsigned * restrict mismatch_qual_total_ret)
{
int num_uncalled = 0;
unsigned num_mismatches = 0;
unsigned mismatch_qual_total = 0;
int len = *len_p;
if (haveN) {
for (int i = 0; i < len; i++) {
if (seq_1[i] == 'N' || seq_2[i] == 'N') {
num_uncalled++;
} else {
if (seq_1[i] != seq_2[i]) {
num_mismatches++;
mismatch_qual_total += min(qual_1[i], qual_2[i]);
}
}
}
} else {
/* This part of the 'if' statement is for optimization purposes
* only; its behavior is equivalent to the block above, except
* this block assumes there are no N characters in the input,
* and therefore no further checks for N's are needed.
*
* Note: this optimization is only useful if most reads don't
* contain N characters. */
#ifdef WITH_SSE2
/* Optional vectorized implementation (about twice as fast as
* nonvectorized on x86_64). */
while (len >= 16) {
/* 16 x 8 bit counters for number of mismatches */
__m128i num_mismatches_v8 = _mm_set1_epi8(0);
/* 8 x 16 bit counters for mismatch quality total */
__m128i mismatch_qual_total_v16 = _mm_set1_epi16(0);
/* The counters of num_mismatches_v8 will overflow if
* 256 mismatches are detected at the same position
* modulo 16 bytes. So, don't process 4096 or more
* bytes before reducing the counters.
*
* mismatch_qual_total_v16 would overflow even faster,
* but we use 16-bit counters for it. */
int todo = min(len, 255 * 16) & ~0xf;
len -= todo;
do {
/* Load 16 bases */
__m128i s1_v8 = _mm_loadu_si128((const void *)seq_1);
__m128i s2_v8 = _mm_loadu_si128((const void *)seq_2);
/* Load 16 quality scores */
__m128i q1_v8 = _mm_loadu_si128((const void *)qual_1);
__m128i q2_v8 = _mm_loadu_si128((const void *)qual_2);
/* Compare bases with each other and negate the
* result. This will produce 0xff in bytes
* where the bases differ and 0x00 in bytes
* where the bases were the same. */
__m128i cmpresult = ~_mm_cmpeq_epi8(s1_v8, s2_v8);
/* Tally mismatched bases. Subtracting 0x00 and
* 0xff is equivalent to adding 0 and 1,
* respectively. */
num_mismatches_v8 = _mm_sub_epi8(num_mismatches_v8,
cmpresult);
/* Tally quality scores for mismatched bases.
*/
/* Get minimum of each quality score. */
__m128i qmin_v8 = _mm_min_epu8(q1_v8, q2_v8);
/* Select only quality scores at mismatch sites
*/
__m128i qadd_v8 = qmin_v8 & cmpresult;
/* Double the precision (8 => 16 bits) and tally */
__m128i qadd_v16_1 = _mm_unpacklo_epi8(qadd_v8,
_mm_set1_epi8(0));
__m128i qadd_v16_2 = _mm_unpackhi_epi8(qadd_v8,
_mm_set1_epi8(0));
mismatch_qual_total_v16 = _mm_add_epi16(mismatch_qual_total_v16,
qadd_v16_1);
mismatch_qual_total_v16 = _mm_add_epi16(mismatch_qual_total_v16,
qadd_v16_2);
/* Advance pointers */
seq_1 += 16, seq_2 += 16;
qual_1 += 16, qual_2 += 16;
todo -= 16;
} while (todo);
/* Reduce the counters. */
num_mismatches += hsum32_v8(num_mismatches_v8);
mismatch_qual_total += hsum32_v16(mismatch_qual_total_v16);
}
#endif /* WITH_SSE2 */
#if 0
/* Verify the values computed by the vectorized implementation.
*/
{
int veclen = *len_p & ~0xf;
const char *_seq_1 = seq_1 - veclen;
const char *_seq_2 = seq_2 - veclen;
const char *_qual_1 = qual_1 - veclen;
const char *_qual_2 = qual_2 - veclen;
unsigned _num_mismatches = 0;
unsigned _mismatch_qual_total = 0;
for (int i = 0; i < veclen; i++) {
if (_seq_1[i] != _seq_2[i]) {
_num_mismatches++;
_mismatch_qual_total += min(_qual_1[i], _qual_2[i]);
}
}
assert(num_mismatches == _num_mismatches);
assert(mismatch_qual_total == _mismatch_qual_total);
}
#endif
/* Process any remainder that wasn't processed by the vectorized
* implementation. */
for (int i = 0; i < len; i++) {
if (seq_1[i] != seq_2[i]) {
num_mismatches++;
mismatch_qual_total += min(qual_1[i], qual_2[i]);
}
}
}
/* Return results in pointer arguments */
*num_mismatches_ret = num_mismatches;
*mismatch_qual_total_ret = mismatch_qual_total;
*len_p -= num_uncalled;
}
#define NO_ALIGNMENT INT_MIN
static inline int *
pair_align(const struct read *read_1, const struct read *read_2,
int min_overlap, int max_overlap, int min_overlap_outie, float max_mismatch_density,
bool allow_outies, bool * was_outie)
{
bool haveN = memchr(read_1->seq, 'N', read_1->seq_len) ||
memchr(read_2->seq, 'N', read_2->seq_len);
/* Best (smallest) mismatch density that has been found so far in an
* overlap. */
float best_mismatch_density = max_mismatch_density + 1.0f;
float best_qual_score = 0.0f;
int best_position = NO_ALIGNMENT;
bool best_was_outie = false;
bool doing_outie = false;
int start;
int end;
int read_offset = 0;
int best_offset = 0;
again:
/* Require at least min_overlap bases overlap, and require that the
* second read is not overlapped such that it is completely contained in
* the first read. */
start = max(0, read_1->seq_len - read_2->seq_len);
end = read_1->seq_len - min_overlap + 1;
if (start == 0) {
read_offset = (read_2->seq_len - read_1->seq_len);
if (read_offset < 0) {
read_offset *= -1;
}
}
for (int i = start; i < end; i++) {
unsigned num_mismatches;
unsigned mismatch_qual_total;
int overlap_len = read_1->seq_len - i;
/*This modification allows for engulf cases of the read*/
compute_mismatch_stats(read_1->seq + i,
read_2->seq + read_offset,
read_1->qual + i,
read_2->qual + read_offset,
haveN,
&overlap_len,
&num_mismatches,
&mismatch_qual_total);
/*Logic to make sure read makes minimum requirements*/
if (((!doing_outie && overlap_len >= min_overlap) || (doing_outie && overlap_len >= min_overlap_outie))) {
float score_len = (float)min(overlap_len, max_overlap);
float qual_score = mismatch_qual_total / score_len;
float mismatch_density = num_mismatches / score_len;
if (mismatch_density <= best_mismatch_density &&
(mismatch_density < best_mismatch_density ||
qual_score < best_qual_score))
{
best_qual_score = qual_score;
best_mismatch_density = mismatch_density;
best_position = i;
best_offset = read_offset;
best_was_outie = doing_outie;
}
}
if (read_offset != 0) {
read_offset -= (i + 1);
i--;
}
}
/*At one point I will remove the goto statments - in non-modified code*/
if (allow_outies) {
const struct read *tmp = read_1;
read_1 = read_2;
read_2 = tmp;
allow_outies = false;
doing_outie = true;
goto again;
}
int *position_and_offset = (int*)malloc(2 * sizeof(int));
position_and_offset[0] = best_position;
position_and_offset[1] = best_offset;
if (best_mismatch_density > max_mismatch_density) {
position_and_offset[0] = NO_ALIGNMENT;
position_and_offset[1] = NO_ALIGNMENT;
}
// return position_and_offset;
*was_outie = best_was_outie;
return position_and_offset;
}
/* Fills in the combined read from the specified alignment. */
static void
generate_combined_read(const struct read *read_1,
const struct read *read_2,
struct read *combined_read,
int overlap_begin,
int read_offset,
bool was_outie,
bool cap_mismatch_quals)
{
/* Length of the overlapping part of two reads. */
int overlap_len = read_1->seq_len - overlap_begin;
/* Length of the part of the second read not overlapped with the first
* read. */
int remaining_len = read_2->seq_len - overlap_len;
int combined_seq_len = read_1->seq_len + remaining_len;
const char * restrict seq_1 = read_1->seq;
const char * restrict seq_2 = read_2->seq;
const char * restrict qual_1 = read_1->qual;
const char * restrict qual_2 = read_2->qual;
char * restrict combined_seq;
char * restrict combined_qual;
if (was_outie) {
//Case of outie, Engulf case
//So, read 2 is engulfed by read 1
if (read_offset != 0) {
const struct read *tmp = read_2;
read_2 = read_1;
read_1 = tmp;
seq_1 = read_1->seq;
seq_2 = read_2->seq;
qual_1 = read_1->qual;
qual_2 = read_2->qual;
overlap_begin = read_offset;
remaining_len = 0;
combined_seq_len = read_2->seq_len+read_offset;
overlap_len = read_2->seq_len;
} else {
combined_seq_len = read_1->seq_len - overlap_begin;
seq_1 += overlap_begin;
overlap_begin = 0;
remaining_len = 0;
}
/*'Typical Case*/
} else {
//Innie, engulf case
if (read_offset != 0) {
//R1 is shorter than R2 (take first part of read R2)
/*ignore first part of read 2*/
seq_2 += read_offset;
qual_2 += read_offset;
/*don't take any part of the first read*/
overlap_begin = 0;
/*Seq_2 minus first part of read 1*/
combined_seq_len = read_2->seq_len - read_offset;
remaining_len = read_2->seq_len - read_1->seq_len - read_offset;
} else {
//nothing fun happens
}
}
/*Allocates the correct size for each condition*/
combined_read->seq = xrealloc(combined_read->seq,
combined_seq_len);
combined_read->seq_bufsz = combined_seq_len;
combined_read->qual = xrealloc(combined_read->qual,
combined_seq_len);
combined_read->qual_bufsz = combined_seq_len;
/* David Modification
* --------|------------
* ------------|---------
* Only keeps the overlying parts in outie
*/
combined_seq = combined_read->seq;
combined_qual = combined_read->qual;
combined_read->seq_len = combined_seq_len;
combined_read->qual_len = combined_seq_len;
/* Copy the beginning of read 1 (not in the overlapped region). */
//if (read_offset == 0) {
while (overlap_begin--) {
*combined_seq++ = *seq_1++;
*combined_qual++ = *qual_1++;
}
//}
/*else if (read_offset != 0) {
while (read_offset--) {
*combined_seq++ = *seq_2++;
*combined_qual++ = *qual_2++;
}
read_offset = -1;
overlap_len = read_1->seq_len;
}*/
/* Copy the overlapped region. */
while (overlap_len-- > 0) {
if (*seq_1 == *seq_2) {
/* Same base in both reads. Take the higher quality
* value. */
*combined_seq = *seq_1;
*combined_qual = max(*qual_1, *qual_2);
} else {
/* Different bases in the two reads; use the higher
* quality one.
*
* The old way of calculating the resulting quality
* value (params->cap_mismatch_quals == %true) is to use
* the lower quality value, and use a quality value of
* at most 2 (+ phred_offset in the final output--- here
* the quality values are all scaled to start at 0).
* The motivation for this behavior is that the read
* combination shows there was sequencing error at the
* mismatch location, so the corresponding base call in
* the combined read should be given a low quality
* score.
*
* The new way (params->cap_mismatch_quals == %false,
* default as of FLASH v1.2.8) is to use the absolute
* value of the difference in quality scores, but at
* least 2. This allows a base call with a high quality
* score to override a base call with a low quality
* score without too much penalty.
*/
if (cap_mismatch_quals)
*combined_qual = min(min(*qual_1, *qual_2), 2);
else
*combined_qual = max(abs(*qual_1 - *qual_2), 2);
if (*qual_1 > *qual_2) {
*combined_seq = *seq_1;
} else if (*qual_1 < *qual_2) {
*combined_seq = *seq_2;
} else {
/* Same quality value; take the base from the
* first read if the base from the second read
* is an 'N'; otherwise take the base from the
* second read. */
if (*seq_2 == 'N')
*combined_seq = *seq_1;
else
*combined_seq = *seq_2;
}
}
combined_seq++;
combined_qual++;
seq_1++;
seq_2++;
qual_1++;
qual_2++;
}
/* Copy the end of read 2 (not in the overlapped region). */
//if (!was_outie && read_offset == 0 && remaining_len > 0) {
while (remaining_len--) {
if (read_offset != 0 && was_outie) {
*combined_seq++ = *seq_2++;
*combined_qual++ = *qual_2++;
} else {
*combined_seq++ = *seq_2++;
*combined_qual++ = *qual_2++;
}
}
/*This check and sees if there is an offset, but also that the offset wasn't for the innie case*/
/*} else if (read_offset > 0) {
while (read_offset--) {
*combined_seq++ = *seq_2++;
}
}*/
}
/* This is the entry point for the core algorithm of FLASH. The following
* function attempts to combine @read_1 with @read_2, and writes the result into
* @combined_read. COMBINED_AS_INNIE or COMBINED_AS_OUTIE is returned if
* combination was successful. COMBINED_AS_OUTIE is only possible if
* params->allow_outies is set.
*
* Note: @read_2 is provided to this function after having been
* reverse-complemented. Hence, the code just aligns the reads in the forward
* orientation, which is equivalent to aligning the original reads in the
* desired reverse-complement orientation.
*
* Please see the help output of FLASH for the description of the min_overlap,
* max_overlap, and max_mismatch_density parameters. (--min-overlap,
* --max-overlap, and --max-mismatch-density on the command line).
*
* You may also want to read the original FLASH publication for a description of
* the algorithm used here:
*
* Title: FLASH: fast length adjustment of short reads to improve genome assemblies
* Authors: Tanja Magoč and Steven L. Salzberg
* URL: http://bioinformatics.oxfordjournals.org/content/27/21/2957.full
*
*/
/*Function for Junk - removal of primer dimers
*50 percent of quality scores must be greater the 2 as default*/
double check_for_junk_read(char * qual_1, char * qual_2, int cut_off) {
double count = 0;
double junk = 0;
int i_1 = 0, i_2 = 0;
/*Could vectorize this in the future*/
while (qual_1[i_1] != '\0' && qual_2[i_2] != '\0') {
if (qual_1[i_1] != '\0') {
if (qual_1[i_1] <= cut_off) {
junk++;
}
count++;
i_1++;
}
if (qual_2[i_2] != '\0') {
if (qual_2[i_2] <= cut_off) {
junk++;
}
count++;
i_2++;
}
}
/*Both doubles so do not have to worry about interger division*/
return junk/count;
}
enum combine_status
combine_reads(const struct read *read_1, const struct read *read_2,
struct read *combined_read,
const struct combine_params *params)
{
int overlap_begin, read_offset, *overlap_and_offset;
enum combine_status status;
bool was_outie = false;
/*check read isn't junk;*/
if (params->discard_reads) {
double percent_junk = check_for_junk_read(read_1->qual, read_2->qual, params->qual_score_cutoff);
if (percent_junk*100 > params->percent_cutoff) {
return JUNK_READ;
}
}
/* Do the alignment. */
overlap_and_offset = pair_align(read_1, read_2,
params->min_overlap,
params->max_overlap,
params->min_overlap_outie,
params->max_mismatch_density,
params->allow_outies,
&was_outie);
overlap_begin = overlap_and_offset[0];
read_offset = overlap_and_offset[1];
/*
* If overlap_begin == NO_ALIGNMENT, then no sufficient overlap between
* the reads was found.
*
* If !@was_outie, then the pair forms an "innie" overlap, and
* overlap_begin is the 0-based position in read_1 at which read_2
* begins. (Shown below with read 2 already reverse complemented!)
*
* 0 overlap_begin
* | |
* Read 1: ------------------>
* Read 2: ---------------------->
*
* If @was_outie, then the pair forms an "outie" overlap, and
* overlap_begin is the 0-based position in read_2 at which read_1
* begins. (Shown below with read 2 already reverse complemented!)
*
* 0 overlap_begin
* | |
* Read 2: ------------------>
* Read 1: ---------------------->
*/
if (overlap_begin == NO_ALIGNMENT)
return NOT_COMBINED;
if (!was_outie) {
status = COMBINED_AS_INNIE;
} else {
const struct read *tmp;
/* Simplify generation of the combined read by turning the outie
* case into the innie case. */
tmp = read_1;
read_1 = read_2;
read_2 = tmp;
status = COMBINED_AS_OUTIE;
/*
* Now it's just:
*
* 0 overlap_begin
* | |
* Read 1: ------------------>
* Read 2: ---------------------->
*
* The same as the "innie" case.
*/
}
if (params->skip_overlap) {
status = NOT_COMBINED;
} else {
/* Fill in the combined read. */
generate_combined_read(read_1, read_2, combined_read,
overlap_begin, read_offset, was_outie, params->cap_mismatch_quals);
}
return status;
}