forked from BaratiLab/Graphene-RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
203 lines (163 loc) · 6.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import gym
import math
import argparse
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import count
import time
from time import gmtime, strftime
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
from graphene_env import GrapheneEnv
from utils import episode_finished, episode_finished_dense
from model import DQN
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0, help="random seed")
args = parser.parse_args()
print(args)
seed = args.seed
np.random.seed(seed)
torch.random.manual_seed(seed)
start_time = time.time()
start_time_str = strftime("%m%d%H%M", gmtime())
save_dir = os.path.join('./save', start_time_str)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# env = gym.make('CartPole-v1')
env = GrapheneEnv(max_timesteps=80)
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
"""Saves a transition."""
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
BATCH_SIZE = 128
GAMMA = 1
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 80000
TARGET_UPDATE = 10
LEARNING_RATE = 0.0005
n_actions = env.action_space.n
n_states = env.observation_space.shape[0]
print('act dim:', n_actions)
print('obs dim:', n_states)
policy_net = DQN(n_states, n_actions)
target_net = DQN(n_states, n_actions)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.Adam(policy_net.parameters(), lr=LEARNING_RATE)
memory = ReplayMemory(10000)
steps_done = 0
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[random.randrange(n_actions)]], dtype=torch.long)
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE)
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
num_episodes = 2000
ep_reward = []
ep_flux = []
ep_rej = []
for i_episode in range(num_episodes):
# Initialize the environment and state
state = env.reset()
state = torch.from_numpy(state).float().view(1, -1)
acc_rew = 0.0
for t in count():
# Select and perform an action
action = select_action(state)
new_state, reward, done, _ = env.step(action.item())
acc_rew += reward
reward = torch.tensor([reward])
# # Observe new state
if not done:
next_state = torch.from_numpy(new_state).float().view(1, -1)
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the target network)
optimize_model()
if done:
# episode_durations.append(t + 1)
ep_reward.append(acc_rew)
flux, rej = env.get_flux_rej()
ep_flux.append(flux)
ep_rej.append(rej)
print("Episode: {}, reward: {}".format(i_episode, acc_rew))
# episode_finished(target_net, policy_net, env, i_episode, save_dir, start_time_str, ep_reward)
episode_finished_dense(target_net, policy_net, env, i_episode, save_dir, start_time_str, ep_reward)
break
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
torch.save(target_net.state_dict(), os.path.join(save_dir, 'target_net.ckpt'))
torch.save(policy_net.state_dict(), os.path.join(save_dir, 'policy_net.ckpt'))
np.save(os.path.join(save_dir, 'rew.npy'), np.array(ep_reward))
np.save(os.path.join(save_dir, 'flux.npy'), np.array(ep_flux))
np.save(os.path.join(save_dir, 'rej.npy'), np.array(ep_rej))
env.close()