-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognize.py
104 lines (84 loc) · 3.51 KB
/
face_recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import face_recognition
import cv2
import numpy as np
import os
video_capture = cv2.VideoCapture(0)
known_face_encodings = [ ]
known_face_names = []
# import faceDetection cascase classifier
face_cascade = cv2.CascadeClassifier('./faceDetection.txt')
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while 1:
ret,img = video_capture.read()
if video_capture is None or not video_capture.isOpened():
print("camera not found")
break
elif cv2.waitKey(1) & 0xFF == ord('d'):
break
else:
#copy image to new variable to save the detected image (*** note its not require)
imgCopy=img.copy()
name=""
#to get bg to gray scal image and detected faces
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow("Take picture",img)
k = cv2.waitKey(33)
if(k==115):
#get user name from terminal input
name = input("Enter user name: ")
known_face_encodings.append(face_recognition.face_encodings(imgCopy)[0])
known_face_names.append(name)
cv2.imwrite(name+".jpg",imgCopy)
continue
# press q to close webcams
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
continue
while True:
ret, frame = video_capture.read()
if video_capture is None or not video_capture.isOpened():
break
else:
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Person detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()