forked from manuelruder/artistic-videos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathartistic_video_multiPass.lua
357 lines (313 loc) · 13.9 KB
/
artistic_video_multiPass.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
require 'torch'
require 'nn'
require 'image'
require 'optim'
require 'loadcaffe'
require 'artistic_video_core'
local flowFile = require 'flowFileLoader'
--------------------------------------------------------------------------------
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-style_image', 'example/seated-nude.jpg',
'Style target image')
cmd:option('-style_blend_weights', 'nil')
cmd:option('-content_pattern', 'example/marple8_%02d.ppm',
'Content target pattern')
cmd:option('-num_images', 0, 'Number of content images. Set 0 for autodetect.')
cmd:option('-start_number', 1, 'Frame index to start with')
cmd:option('-gpu', 0, 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
cmd:option('-number_format', '%d', 'Number format of the output images.')
-- Flow options
cmd:option('-forwardFlow_pattern', 'example/deepflow/forward_[%d]_{%d}.flo',
'Flow file pattern. [.] will be replaced with the "from"-index, {.} with the "to"-index.')
cmd:option('-backwardFlow_pattern', 'example/deepflow/backward_[%d]_{%d}.flo',
'Flow file pattern. [.] will be replaced with the "from"-index, {.} with the "to"-index.')
cmd:option('-forwardFlow_weight_pattern', 'example/deepflow/reliable_[%d]_{%d}.pgm',
'Flow file pattern. [.] will be replaced with the "from"-index, {.} with the "to"-index.')
cmd:option('-backwardFlow_weight_pattern', 'example/deepflow/reliable_[%d]_{%d}.pgm',
'Flow file pattern. [.] will be replaced with the "from"-index, {.} with the "to"-index.')
-- Multi-pass options
cmd:option('-blendWeight', 1.0, '')
cmd:option('-blendWeight_lastPass', 0.0, '')
cmd:option('-use_temporalLoss_after', 8, '')
cmd:option('-num_passes', 15, 'Number of passes')
cmd:option('-continue_with_pass', 1, '')
-- Optimization options
cmd:option('-content_weight', 5e0)
cmd:option('-style_weight', 1e2)
cmd:option('-temporal_weight', 5e2)
cmd:option('-tv_weight', 1e-3)
cmd:option('-temporal_loss_criterion', 'mse', 'mse|smoothl1')
cmd:option('-num_iterations', 100, 'Number of iterations per pass')
cmd:option('-tol_loss_relative', 0, 'stop if relative change of the loss function is below this value')
cmd:option('-tol_loss_relative_interval', 100, 'interval between two function comparisons')
cmd:option('-normalize_gradients', false)
cmd:option('-init', 'random', 'random|image|prevWarped')
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam')
cmd:option('-learning_rate', 1e1)
-- Output options
cmd:option('-print_iter', 50)
cmd:option('-save_iter', 0)
cmd:option('-output_image', 'out.png')
cmd:option('-output_folder', '')
cmd:option('-save_init', false, 'Whether the initialization image should be saved (for debugging purposes).')
-- Other options
cmd:option('-style_scale', 1.0)
cmd:option('-pooling', 'max', 'max|avg')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-backend', 'nn', 'nn|cudnn|clnn')
cmd:option('-cudnn_autotune', false)
cmd:option('-seed', -1)
cmd:option('-content_layers', 'relu4_2', 'layers for content')
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style')
cmd:option('-args', '', 'Arguments in a file, one argument per line')
function nn.SpatialConvolutionMM:accGradParameters()
-- nop. not needed by our net
end
local function main(params)
if params.gpu >= 0 then
if params.backend ~= 'clnn' then
require 'cutorch'
require 'cunn'
cutorch.setDevice(params.gpu + 1)
else
require 'clnn'
require 'cltorch'
cltorch.setDevice(params.gpu + 1)
end
else
params.backend = 'nn'
end
if params.backend == 'cudnn' then
require 'cudnn'
if params.cudnn_autotune then
cudnn.benchmark = true
end
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop
end
local loadcaffe_backend = params.backend
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end
local cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):float()
cnn = MaybePutOnGPU(cnn, params)
local num_images = params.num_images
if num_images == 0 then
num_images = calcNumberOfContentImages(params)
print("Detected " .. num_images .. " content images.")
end
local end_image_idx = num_images + params.start_number - 1
local style_images_caffe = getStyleImages(params)
-- Set up the network, inserting style and content loss modules
local net, style_losses, losses_indices, losses_type = buildNet(cnn, params, style_images_caffe)
-- We don't need the base CNN anymore, so clean it up to save memory.
cnn = nil
for i=1,#net.modules do
local module = net.modules[i]
if torch.type(module) == 'nn.SpatialConvolutionMM' then
-- remote these, not used, but uses gpu memory
module.gradWeight = nil
module.gradBias = nil
end
end
collectgarbage()
local img = nil
-- Initialize the image
if params.seed >= 0 then
torch.manualSeed(params.seed)
end
local content_size = image.load(string.format(params.content_pattern, params.start_number), 3):size()
local randImg = torch.randn(content_size):mul(0.001)
local usePrev = params.init == 'prev' or params.init == 'prevWarped'
local needFlow = params.init == 'prevWarped' or params.prevPlusFlow_layers ~= ''
for run=params.continue_with_pass, params.num_passes do
local flag = run % 2
local start = (flag == 0) and end_image_idx or params.start_number
local endp = (flag == 0) and params.start_number or end_image_idx
local incr = (flag == 0) and -1 or 1
for frameIdx=start,endp, incr do
local content_image_caffe = getContentImage(frameIdx, params)
local content_losses, prevPlusFlow_losses = {}, {}
local additional_layers = 0
local num_iterations = params.num_iterations
-- Previous and following frame warped
local prevImageWarped, nextImageWarped = nil, nil
-- The warped frame which will be used for temporal consistency.
local imageWarped = nil
-- Find out if we are forward or backward pass, and set "imageWarped" accordingly.
if frameIdx > params.start_number then
prevImageWarped = readPrevImageWarped(frameIdx, params, run - (1 - flag), false)
end
if run > 1 and frameIdx < end_image_idx then
nextImageWarped = readNextImageWarped(frameIdx, params, run - flag, false)
end
if flag == 1 then imageWarped = prevImageWarped end
if flag == 0 then imageWarped = nextImageWarped end
local temporalLossEnabled = run >= params.use_temporalLoss_after and imageWarped ~= nil
-- add layers for this iteration
for i=1, #losses_indices do
if losses_type[i] == 'content' then
local content_loss = getContentLossModuleForLayer(net,
losses_indices[i] + additional_layers,
content_image_caffe, params)
net:insert(content_loss, losses_indices[i] + additional_layers)
additional_layers = additional_layers + 1
table.insert(content_losses, content_loss)
elseif temporalLossEnabled then
imageWarped = preprocess(imageWarped):float()
imageWarped = MaybePutOnGPU(imageWarped, params)
local flowWeights = nil
if losses_type[i] == 'prevPlusFlowWeighted' then
local weightsFileName = nil
if flag == 1 then
weightsFileName = getFormatedFlowFileName(params.backwardFlow_weight_pattern, frameIdx-1, frameIdx)
else
weightsFileName = getFormatedFlowFileName(params.forwardFlow_weight_pattern, frameIdx+1, frameIdx)
end
print(string.format('Reading flowWeights file "%s".', weightsFileName))
flowWeights = image.load(weightsFileName):float()
flowWeights = flowWeights:expand(3, flowWeights:size(2), flowWeights:size(3))
flowWeights = MaybePutOnGPU(flowWeights, params)
end
local loss_module = getWeightedContentLossModuleForLayer(net,
losses_indices[i] + additional_layers, imageWarped,
params, flowWeights)
net:insert(loss_module, losses_indices[i] + additional_layers)
table.insert(prevPlusFlow_losses, loss_module)
additional_layers = additional_layers + 1
end
end
if run == 1 then
-- For the first run, process the frames independently
if frameIdx == params.start_number or params.init == 'random' then
img = randImg:clone():float()
elseif init == 'image' then
img = content_image:clone():float()
elseif params.init == 'prevWarped' then
local prevImageWarpedWithPad = readPrevImageWarped(frameIdx, params, run - (1 - flag), true)
img = preprocess(prevImageWarpedWithPad):float()
else
print('Unknown initialization method.')
os.exit()
end
else
-- For subsequent runs, blend neighboring frames into the current frame
img = image.load(build_OutFilename(params, frameIdx, run - 1), 3)
-- Make sure to correctly normalize the result
local divisor = torch.zeros(content_image_caffe:size())
divisor:add(1)
if frameIdx > params.start_number then
local weightsFileName = getFormatedFlowFileName(params.backwardFlow_weight_pattern, frameIdx-1, frameIdx)
print(string.format('Reading flowWeights file "%s".', weightsFileName))
local prevImageWeights = image.load(weightsFileName)
prevImageWeights = prevImageWeights:expand(3, prevImageWeights:size(2), prevImageWeights:size(3))
prevImageWeights:mul(flag == 1 and params.blendWeight or params.blendWeight_lastPass)
img:add(torch.cmul(prevImageWarped, prevImageWeights))
divisor:add(prevImageWeights)
end
if frameIdx < end_image_idx then
local weightsFileName = getFormatedFlowFileName(params.forwardFlow_weight_pattern, frameIdx+1, frameIdx)
print(string.format('Reading flowWeights file "%s".', weightsFileName))
local nextImageWeights = image.load(weightsFileName)
nextImageWeights = nextImageWeights:expand(3, nextImageWeights:size(2), nextImageWeights:size(3))
nextImageWeights:mul(flag == 0 and params.blendWeight or params.blendWeight_lastPass)
img:add(torch.cmul(nextImageWarped, nextImageWeights))
divisor:add(nextImageWeights)
end
img:cdiv(divisor)
img = preprocess(img):float()
end
img = MaybePutOnGPU(img, params)
if params.save_init then
save_image(img, params.output_folder .. string.format(
'init-' .. params.number_format .. '_%d.png', frameIdx, run))
end
-- Run the optimization for some iterations, save the result to disk
runOptimization(params, net, content_losses, style_losses, prevPlusFlow_losses,
img, frameIdx, run, num_iterations)
-- Remove this iteration's content and temporal layers
for i=#losses_indices, 1, -1 do
if temporalLossEnabled or losses_type[i] == 'content' then
additional_layers = additional_layers - 1
net:remove(losses_indices[i] + additional_layers)
end
end
assert(additional_layers == 0)
end
end
end
-- warp previous frame.
-- Disocclusions at the borders will be filled with the VGG mean pixel, if pad_mean_pixel is true.
function readPrevImageWarped(idx, params, run, pad_mean_pixel)
local flowFileName = getFormatedFlowFileName(params.backwardFlow_pattern, idx-1, idx)
print(string.format('Reading backward flow file "%s".', flowFileName))
local flow = flowFile.load(flowFileName)
local prevImg = image.load(build_OutFilename(params, idx-1, run), 3)
local result = nil
if pad_mean_pixel then
local mean_pixel = torch.DoubleTensor({123.68/256.0, 116.779/256.0, 103.939/256.0})
result = image.warp(prevImg, flow, 'bilinear', true, 'pad', -1)
for x=1, result:size(2) do
for y=1, result:size(3) do
if result[1][x][y] == -1 and result[2][x][y] == -1 and result[3][x][y] == -1 then
result[1][x][y] = mean_pixel[1]
result[2][x][y] = mean_pixel[2]
result[3][x][y] = mean_pixel[3]
end
end
end
else
result = image.warp(prevImg, flow)
end
return result
end
-- warp following frame.
-- Disocclusions at the borders will be filled with the VGG mean pixel, if pad_mean_pixel is true.
function readNextImageWarped(idx, params, run, pad_mean_pixel)
local flowFileName = getFormatedFlowFileName(params.forwardFlow_pattern, idx+1, idx)
print(string.format('Reading forward flow file "%s".', flowFileName))
local flow = flowFile.load(flowFileName)
local nextImg = image.load(build_OutFilename(params, idx+1, run), 3)
if pad_mean_pixel then
local mean_pixel = torch.DoubleTensor({123.68/256.0, 116.779/256.0, 103.939/256.0})
result = image.warp(nextImg, flow, 'bilinear', true, 'pad', -1)
for x=1, result:size(2) do
for y=1, result:size(3) do
if result[1][x][y] == -1 and result[2][x][y] == -1 and result[3][x][y] == -1 then
result[1][x][y] = mean_pixel[1]
result[2][x][y] = mean_pixel[2]
result[3][x][y] = mean_pixel[3]
end
end
end
else
result = image.warp(nextImg, flow)
end
return result
end
local tmpParams = cmd:parse(arg)
local params = nil
local file = io.open(tmpParams.args, 'r')
if tmpParams.args == '' or file == nil then
params = cmd:parse(arg)
else
local args = {}
io.input(file)
local argPos = 1
while true do
local line = io.read()
if line == nil then break end
if line:sub(0, 1) == '-' then
local splits = str_split(line, " ", 2)
args[argPos] = splits[1]
args[argPos + 1] = splits[2]
argPos = argPos + 2
end
end
for i=1, #arg do
args[argPos] = arg[i]
argPos = argPos + 1
end
params = cmd:parse(args)
io.close(file)
end
main(params)