We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Thank you for open sourcing your work.
I need some help to run a single inference on the model. Evaluation results match the results shown in readme.
I managed to get 10 Lidar seeps from the nuscenes dataset to pass into the data processor how do I run the model on batch size 1?
I get results with a very low score.
[{'pred_boxes': tensor([[ 5.9413e+00, 3.6396e+00, 3.4623e-02, ..., 2.1592e+00, 8.4747e-02, -4.7400e-02], [ 8.3678e+00, 2.4014e+00, -1.2982e-02, ..., 1.9676e+00, 1.6921e-02, 3.2265e-02], [ 7.1588e+00, 3.0267e+00, 8.0288e-03, ..., -7.9587e-01, -1.0607e-02, 4.5947e-02], ..., [-3.2396e+01, 2.6405e+01, 1.2968e-02, ..., -1.3317e+00, 2.1994e-02, 1.7819e-02], [ 9.5994e+00, 5.0404e+01, 5.9437e-03, ..., -1.0493e+00, 1.6636e-02, 8.8143e-03], [-7.8000e+00, -8.9908e+00, 4.4057e-03, ..., -1.0186e+00, 4.8190e-02, 5.5851e-03]], device='cuda:0'), 'pred_ious': [None, None, None, None, None, None], 'pred_labels': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9], device='cuda:0'), 'pred_scores': tensor([0.1018, 0.1016, 0.1016, 0.1015, 0.1015, 0.1014, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1045, 0.1034, 0.1034, 0.1033, 0.1032, 0.1032, 0.1032, 0.1031, 0.1031, 0.1031, 0.1031, 0.1031, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1032, 0.1026, 0.1023, 0.1022, 0.1021, 0.1019, 0.1019, 0.1019, 0.1018, 0.1018, 0.1018, 0.1017, 0.1017, 0.1017, 0.1017, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1026, 0.1022, 0.1022, 0.1021, 0.1021, 0.1020, 0.1020, 0.1020, 0.1019, 0.1019, 0.1018, 0.1018, 0.1018, 0.1017, 0.1017, 0.1017, 0.1017, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1000, 0.1039, 0.1037, 0.1036, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032], device='cuda:0')}]
The text was updated successfully, but these errors were encountered:
+1 I need help with this too.
Sorry, something went wrong.
hello,how do you train the datasets? I’m a freshman to run the work, please give me some tips.Thanks!
No branches or pull requests
Thank you for open sourcing your work.
I need some help to run a single inference on the model. Evaluation results match the results shown in readme.
I managed to get 10 Lidar seeps from the nuscenes dataset to pass into the data processor how do I run the model on batch size 1?
I get results with a very low score.
The text was updated successfully, but these errors were encountered: