Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Question] How to run a single inference on this model? #42

Open
MyronRodrigues-StreetDrone opened this issue Aug 8, 2023 · 2 comments

Comments

@MyronRodrigues-StreetDrone

Thank you for open sourcing your work.

I need some help to run a single inference on the model. Evaluation results match the results shown in readme.

I managed to get 10 Lidar seeps from the nuscenes dataset to pass into the data processor how do I run the model on batch size 1?

I get results with a very low score.

[{'pred_boxes': tensor([[ 5.9413e+00,  3.6396e+00,  3.4623e-02,  ...,  2.1592e+00,
          8.4747e-02, -4.7400e-02],
        [ 8.3678e+00,  2.4014e+00, -1.2982e-02,  ...,  1.9676e+00,
          1.6921e-02,  3.2265e-02],
        [ 7.1588e+00,  3.0267e+00,  8.0288e-03,  ..., -7.9587e-01,
         -1.0607e-02,  4.5947e-02],
        ...,
        [-3.2396e+01,  2.6405e+01,  1.2968e-02,  ..., -1.3317e+00,
          2.1994e-02,  1.7819e-02],
        [ 9.5994e+00,  5.0404e+01,  5.9437e-03,  ..., -1.0493e+00,
          1.6636e-02,  8.8143e-03],
        [-7.8000e+00, -8.9908e+00,  4.4057e-03,  ..., -1.0186e+00,
          4.8190e-02,  5.5851e-03]], device='cuda:0'),
  'pred_ious': [None, None, None, None, None, None],
  'pred_labels': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5,
        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
        5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 9, 9, 9,
        9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
        9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
        9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
        9, 9, 9, 9, 9, 9, 9, 9], device='cuda:0'),
  'pred_scores': tensor([0.1018, 0.1016, 0.1016, 0.1015, 0.1015, 0.1014, 0.1013, 0.1013, 0.1013,
        0.1013, 0.1013, 0.1013, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012,
        0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012,
        0.1012, 0.1012, 0.1012, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011,
        0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011,
        0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011,
        0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011,
        0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011,
        0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011,
        0.1011, 0.1011, 0.1045, 0.1034, 0.1034, 0.1033, 0.1032, 0.1032, 0.1032,
        0.1031, 0.1031, 0.1031, 0.1031, 0.1031, 0.1030, 0.1030, 0.1030, 0.1030,
        0.1030, 0.1030, 0.1030, 0.1030, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029,
        0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029,
        0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1028, 0.1028, 0.1028, 0.1028,
        0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028,
        0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028,
        0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028,
        0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028,
        0.1028, 0.1028, 0.1028, 0.1028, 0.1032, 0.1026, 0.1023, 0.1022, 0.1021,
        0.1019, 0.1019, 0.1019, 0.1018, 0.1018, 0.1018, 0.1017, 0.1017, 0.1017,
        0.1017, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1015, 0.1015, 0.1015,
        0.1015, 0.1015, 0.1015, 0.1015, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014,
        0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014,
        0.1014, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013,
        0.1013, 0.1013, 0.1013, 0.1013, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012,
        0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012,
        0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012,
        0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1026, 0.1022, 0.1022,
        0.1021, 0.1021, 0.1020, 0.1020, 0.1020, 0.1019, 0.1019, 0.1018, 0.1018,
        0.1018, 0.1017, 0.1017, 0.1017, 0.1017, 0.1016, 0.1016, 0.1016, 0.1016,
        0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016,
        0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1015, 0.1015, 0.1015,
        0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015,
        0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015,
        0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015,
        0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015,
        0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1000,
        0.1039, 0.1037, 0.1036, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034,
        0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1033, 0.1033, 0.1033,
        0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033,
        0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033,
        0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033,
        0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033,
        0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1032, 0.1032,
        0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032,
        0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032,
        0.1032, 0.1032], device='cuda:0')}]
@AmrinKareem
Copy link

+1
I need help with this too.

@Wangzy-zoey
Copy link

hello,how do you train the datasets? I’m a freshman to run the work, please give me some tips.Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants