-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaux_functions.py
70 lines (58 loc) · 2.04 KB
/
aux_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import imghdr
import math
import struct
from sklearn.preprocessing import LabelBinarizer
import sklearn.utils.validation as val
import numpy as np
def get_image_size(f_name):
with open(f_name, 'rb') as f_handle:
head = f_handle.read(24)
if len(head) != 24:
return
if imghdr.what(f_name) == 'png':
check = struct.unpack('>i', head[4:8])[0]
if check != 0x0d0a1a0a:
return
width, height = struct.unpack('>ii', head[16:24])
else:
return
return width, height
def get_percentage_of_list(list, percentage):
size = math.floor(len(list) * percentage)
return list[:size]
def _weighted_sum(sample_score, sample_weight, normalize=False):
if normalize:
return np.average(sample_score, weights=sample_weight)
elif sample_weight is not None:
return np.dot(sample_score, sample_weight)
else:
return sample_score.sum()
def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None):
lb = LabelBinarizer()
T = lb.fit_transform(y_true)
if T.shape[1] == 1:
T = np.append(1 - T, T, axis=1)
# Clipping
Y = np.clip(y_pred, eps, 1 - eps)
# This happens in cases when elements in y_pred have type "str".
if not isinstance(Y, np.ndarray):
raise ValueError("y_pred should be an array of floats.")
# If y_pred is of single dimension, assume y_true to be binary
# and then check.
if Y.ndim == 1:
Y = Y[:, np.newaxis]
if Y.shape[1] == 1:
Y = np.append(1 - Y, Y, axis=1)
# Check if dimensions are consistent.
val.check_consistent_length(T, Y)
T = val.check_array(T)
Y = val.check_array(Y)
print(T)
print(Y)
if T.shape[1] != Y.shape[1]:
raise ValueError("y_true and y_pred have different number of classes "
"%d, %d" % (T.shape[1], Y.shape[1]))
# Renormalize
Y /= Y.sum(axis=1)[:, np.newaxis]
loss = -(T * np.log(Y)).sum(axis=1)
return _weighted_sum(loss, sample_weight, normalize)