From b52340e7d1c8dff4b1c5347fe50389c937b84333 Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Wed, 2 Oct 2024 18:55:57 +0200 Subject: [PATCH] CI: Re-enable benchmark model gradient checks / prettify gradient check output * Make the result more informative and more readable. * Re-enable some test problems, use stricter tolerances for some at least #967 * More problem-specific settings --- .../benchmark-models/test_petab_benchmark.py | 196 +++++++++++------- 1 file changed, 124 insertions(+), 72 deletions(-) diff --git a/tests/benchmark-models/test_petab_benchmark.py b/tests/benchmark-models/test_petab_benchmark.py index 2dc650d1b8..4892100877 100644 --- a/tests/benchmark-models/test_petab_benchmark.py +++ b/tests/benchmark-models/test_petab_benchmark.py @@ -19,6 +19,7 @@ from fiddy.extensions.amici import simulate_petab_to_cached_functions from fiddy.success import Consistency + repo_root = Path(__file__).parent.parent.parent # reuse compiled models from test_benchmark_collection.sh @@ -40,15 +41,9 @@ "Fujita_SciSignal2010", # FIXME: re-enable "Raia_CancerResearch2011", - "Zheng_PNAS2012", } models = list(sorted(models)) -debug = False -if debug: - debug_path = Path(__file__).parent / "debug" - debug_path.mkdir(exist_ok=True, parents=True) - @dataclass class GradientCheckSettings: @@ -58,6 +53,10 @@ class GradientCheckSettings: # Absolute and relative tolerances for finite difference gradient checks. atol_check: float = 1e-3 rtol_check: float = 1e-2 + # Absolute and relative tolerances for fiddy consistency check between + # forward/backward/central differences. + atol_consistency: float = 1e-5 + rtol_consistency: float = 1e-1 # Step sizes for finite difference gradient checks. step_sizes = [ 1e-1, @@ -68,50 +67,73 @@ class GradientCheckSettings: 1e-5, ] rng_seed: int = 0 + ss_sensitivity_mode: amici.SteadyStateSensitivityMode = ( + amici.SteadyStateSensitivityMode.integrateIfNewtonFails + ) + noise_level: float = 0.05 settings = defaultdict(GradientCheckSettings) -settings["Smith_BMCSystBiol2013"] = GradientCheckSettings( - atol_sim=1e-10, - rtol_sim=1e-10, +# NOTE: Newton method fails badly with ASA for Blasi_CellSystems2016 +settings["Blasi_CellSystems2016"] = GradientCheckSettings( + atol_check=1e-12, + rtol_check=1e-4, + ss_sensitivity_mode=amici.SteadyStateSensitivityMode.integrationOnly, +) +settings["Borghans_BiophysChem1997"] = GradientCheckSettings( + rng_seed=2, + atol_check=1e-5, + rtol_check=1e-3, +) +settings["Brannmark_JBC2010"] = GradientCheckSettings( + ss_sensitivity_mode=amici.SteadyStateSensitivityMode.integrationOnly, ) +settings["Giordano_Nature2020"] = GradientCheckSettings( + atol_check=1e-6, rtol_check=1e-3, rng_seed=1 +) +settings["Okuonghae_ChaosSolitonsFractals2020"] = GradientCheckSettings( + atol_sim=1e-14, + rtol_sim=1e-14, + noise_level=0.01, + atol_consistency=1e-3, +) +settings["Okuonghae_ChaosSolitonsFractals2020"].step_sizes.extend([0.2, 0.005]) settings["Oliveira_NatCommun2021"] = GradientCheckSettings( # Avoid "root after reinitialization" atol_sim=1e-12, rtol_sim=1e-12, ) -settings["Okuonghae_ChaosSolitonsFractals2020"] = GradientCheckSettings( - atol_sim=1e-14, - rtol_sim=1e-14, +settings["Smith_BMCSystBiol2013"] = GradientCheckSettings( + atol_sim=1e-10, + rtol_sim=1e-10, ) -settings["Okuonghae_ChaosSolitonsFractals2020"].step_sizes.insert(0, 0.2) -settings["Giordano_Nature2020"] = GradientCheckSettings( - atol_check=1e-6, rtol_check=1e-3, rng_seed=1 +settings["Sneyd_PNAS2002"] = GradientCheckSettings( + atol_sim=1e-15, + rtol_sim=1e-12, + atol_check=1e-5, + rtol_check=1e-4, + rng_seed=7, +) +settings["Weber_BMC2015"] = GradientCheckSettings( + atol_sim=1e-12, + rtol_sim=1e-12, + atol_check=1e-6, + rtol_check=1e-2, + rng_seed=1, +) +settings["Zheng_PNAS2012"] = GradientCheckSettings( + rng_seed=1, + rtol_sim=1e-15, + atol_check=5e-4, + rtol_check=4e-3, + noise_level=0.01, ) -def assert_gradient_check_success( - derivative: fiddy.Derivative, - expected_derivative: np.array, - point: np.array, - atol: float, - rtol: float, -) -> None: - if not derivative.df.success.all(): - raise AssertionError( - f"Failed to compute finite differences:\n{derivative.df}" - ) - check = NumpyIsCloseDerivativeCheck( - derivative=derivative, - expectation=expected_derivative, - point=point, - ) - check_result = check(rtol=rtol, atol=atol) - - if check_result.success is True: - return - - raise AssertionError(f"Gradient check failed:\n{check_result.df}") +debug = False +if debug: + debug_path = Path(__file__).parent / "debug" + debug_path.mkdir(exist_ok=True, parents=True) @pytest.mark.filterwarnings( @@ -135,7 +157,7 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request): "Borghans_BiophysChem1997", "Sneyd_PNAS2002", "Bertozzi_PNAS2020", - "Okuonghae_ChaosSolitonsFractals2020", + "Zheng_PNAS2012", ): # not really worth the effort trying to fix these cases if they # only fail on linear scale @@ -144,7 +166,6 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request): if ( model in ( - "Blasi_CellSystems2016", # events with parameter-dependent triggers # https://github.com/AMICI-dev/AMICI/issues/18 "Oliveira_NatCommun2021", @@ -154,25 +175,11 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request): # FIXME pytest.skip() - if ( - model - in ( - "Weber_BMC2015", - "Sneyd_PNAS2002", - ) - and sensitivity_method == SensitivityMethod.forward - ): - # FIXME - pytest.skip() - petab_problem = benchmark_models_petab.get_problem(model) petab.flatten_timepoint_specific_output_overrides(petab_problem) # Only compute gradient for estimated parameters. - parameter_df_free = petab_problem.parameter_df.loc[ - petab_problem.x_free_ids - ] - parameter_ids = list(parameter_df_free.index) + parameter_ids = petab_problem.x_free_ids cur_settings = settings[model] # Setup AMICI objects. @@ -183,13 +190,10 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request): amici_solver = amici_model.getSolver() amici_solver.setAbsoluteTolerance(cur_settings.atol_sim) amici_solver.setRelativeTolerance(cur_settings.rtol_sim) - amici_solver.setMaxSteps(int(1e5)) + amici_solver.setMaxSteps(2 * 10**5) amici_solver.setSensitivityMethod(sensitivity_method) - - if model in ("Brannmark_JBC2010",): - amici_model.setSteadyStateSensitivityMode( - amici.SteadyStateSensitivityMode.integrationOnly - ) + # TODO: we should probably test all sensitivity modes + amici_model.setSteadyStateSensitivityMode(cur_settings.ss_sensitivity_mode) amici_function, amici_derivative = simulate_petab_to_cached_functions( petab_problem=petab_problem, @@ -204,24 +208,20 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request): # cache=not debug, cache=False, ) - - noise_level = 0.1 np.random.seed(cur_settings.rng_seed) # find a point where the derivative can be computed for _ in range(5): if scale: - point = np.asarray( - list( - petab_problem.scale_parameters( - dict(parameter_df_free.nominalValue) - ).values() - ) + point = petab_problem.x_nominal_free_scaled + point_noise = ( + np.random.randn(len(point)) * cur_settings.noise_level ) - point_noise = np.random.randn(len(point)) * noise_level else: - point = parameter_df_free.nominalValue.values - point_noise = np.random.randn(len(point)) * point * noise_level + point = petab_problem.x_nominal_free + point_noise = ( + np.random.randn(len(point)) * point * cur_settings.noise_level + ) point += point_noise # avoid small gradients at nominal value try: @@ -239,11 +239,19 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request): sizes=cur_settings.step_sizes, direction_ids=parameter_ids, method_ids=[MethodId.CENTRAL, MethodId.FORWARD, MethodId.BACKWARD], - success_checker=Consistency(atol=1e-5, rtol=1e-1), + success_checker=Consistency( + rtol=cur_settings.rtol_consistency, + atol=cur_settings.atol_consistency, + ), expected_result=expected_derivative, relative_sizes=not scale, ) + print() + print("Testing at:", point) + print("Expected derivative:", expected_derivative) + print("Print actual derivative:", derivative.series.values) + if debug: write_debug_output( debug_path / f"{request.node.callspec.id}.tsv", @@ -258,9 +266,53 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request): point, rtol=cur_settings.rtol_check, atol=cur_settings.atol_check, + always_print=True, ) +def assert_gradient_check_success( + derivative: fiddy.Derivative, + expected_derivative: np.array, + point: np.array, + atol: float, + rtol: float, + always_print: bool = False, +) -> None: + if not derivative.df.success.all(): + raise AssertionError( + f"Failed to compute finite differences:\n{derivative.df}" + ) + check = NumpyIsCloseDerivativeCheck( + derivative=derivative, + expectation=expected_derivative, + point=point, + ) + check_result = check(rtol=rtol, atol=atol) + + if check_result.success is True and not always_print: + return + + df = check_result.df + df["abs_diff"] = np.abs(df["expectation"] - df["test"]) + df["rel_diff"] = df["abs_diff"] / np.abs(df["expectation"]) + df["atol_success"] = df["abs_diff"] <= atol + df["rtol_success"] = df["rel_diff"] <= rtol + max_adiff = df["abs_diff"].max() + max_rdiff = df["rel_diff"].max() + with pd.option_context("display.max_columns", None, "display.width", None): + message = ( + f"Gradient check failed:\n{df}\n\n" + f"Maximum absolute difference: {max_adiff} (tolerance: {atol})\n" + f"Maximum relative difference: {max_rdiff} (tolerance: {rtol})" + ) + + if check_result.success is False: + raise AssertionError(message) + + if always_print: + print(message) + + def write_debug_output( file_name, derivative, expected_derivative, parameter_ids ):