forked from XPoet/js-data-structure-and-algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tree.js
269 lines (212 loc) · 6.31 KB
/
tree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// 节点类
class Node {
constructor(key) {
this.key = key;
this.left = null;
this.right = null;
}
}
// 封装二叉搜索树(特点:左子树节点值 < 根节点,右子树节点值 > 根节点)
export class BinarySearchTree {
constructor() {
this.root = null;
}
// insert(key) 插入数据
insert(key) {
const newNode = new Node(key);
if (this.root === null) {
this.root = newNode;
} else {
this.insertNode(this.root, newNode);
}
}
insertNode(root, node) {
if (node.key < root.key) { // 往左边查找插入
if (root.left === null) {
root.left = node;
} else {
this.insertNode(root.left, node);
}
} else { // 往右边查找插入
if (root.right === null) {
root.right = node;
} else {
this.insertNode(root.right, node);
}
}
}
// ----------- 二叉树遍历 ----------- //
// 先序遍历(根左右 DLR)
preorderTraversal() {
const result = [];
this.preorderTraversalNode(this.root, result);
return result;
}
preorderTraversalNode(node, result) {
if (node === null) return result;
result.push(node.key);
this.preorderTraversalNode(node.left, result);
this.preorderTraversalNode(node.right, result);
}
// 中序遍历(左根右 LDR)
inorderTraversal() {
const result = [];
this.inorderTraversalNode(this.root, result);
return result;
}
inorderTraversalNode(node, result) {
if (node === null) return result;
this.inorderTraversalNode(node.left, result);
result.push(node.key);
this.inorderTraversalNode(node.right, result);
}
// 后序遍历(左右根 LRD)
postorderTraversal() {
const result = [];
this.postorderTraversalNode(this.root, result);
return result;
}
postorderTraversalNode(node, result) {
if (node === null) return result;
this.postorderTraversalNode(node.left, result);
this.postorderTraversalNode(node.right, result);
result.push(node.key);
}
// min() 获取二叉搜索树最小值
min() {
if (!this.root) return null;
let node = this.root;
while (node.left !== null) {
node = node.left;
}
return node.key;
}
// max() 获取二叉搜索树最大值
max() {
if (!this.root) return null;
let node = this.root;
while (node.right !== null) {
node = node.right;
}
return node.key;
}
// search(key) 查找二叉搜索树中是否有相同的key,存在返回 true,否则返回 false
search(key) {
return this.searchNode(this.root, key);
}
// 通过递归实现
searchNode(node, key) {
if (node === null) return false;
if (key < node.key) {
return this.searchNode(node.left, key);
} else if (key > node.key) {
return this.searchNode(node.right, key);
} else {
return true;
}
}
// 通过 while 循环实现
search2(key) {
let node = this.root;
while (node !== null) {
if (key < node.key) {
node = node.left;
} else if (key > node.key) {
node = node.right;
} else {
return true;
}
}
return false;
}
// 删除节点
remove(key) {
let currentNode = this.root;
let parentNode = null;
let isLeftChild = true;
// 循环查找到要删除的节点 currentNode,以及它的 parentNode、isLeftChild
while (currentNode.key !== key) {
parentNode = currentNode;
// 小于,往左查找
if (key < currentNode.key) {
isLeftChild = true;
currentNode = currentNode.left;
} else { // 否则往右查找
isLeftChild = false;
currentNode = currentNode.right;
}
// 找到最后都没找到相等的节点,返回 false
if (currentNode === null) {
return false;
}
}
// 1、删除的是叶子节点的情况
if (currentNode.left === null && currentNode.right === null) {
if (currentNode === this.root) {
this.root = null;
} else if (isLeftChild) {
parentNode.left = null;
} else {
parentNode.right = null;
}
// 2、删除的是只有一个子节点的节点
} else if (currentNode.right === null) { // currentNode 只存在左节点
//-- 2.1、currentNode 只存在<左节点>的情况
//---- 2.1.1、currentNode 等于 root
//---- 2.1.2、parentNode.left 等于 currentNode
//---- 2.1.3、parentNode.right 等于 currentNode
if (currentNode === this.root) {
this.root = currentNode.left;
} else if (isLeftChild) {
parentNode.left = currentNode.left;
} else {
parentNode.right = currentNode.left;
}
} else if (currentNode.left === null) { // currentNode 只存在右节点
//-- 2.2、currentNode 只存在<右节点>的情况
//---- 2.1.1 currentNode 等于 root
//---- 2.1.1 parentNode.left 等于 currentNode
//---- 2.1.1 parentNode.right 等于 currentNode
if (currentNode === this.root) {
this.root = currentNode.right;
} else if (isLeftChild) {
parentNode.left = currentNode.right;
} else {
parentNode.right = currentNode.right;
}
// 3、删除的是有两个子节点的节点
} else {
// 1、找到后续节点
let successor = this.getSuccessor(currentNode);
// 2、判断是否为根节点
if (currentNode === this.root) {
this.root = successor;
} else if (isLeftChild) {
parentNode.left = successor;
} else {
parentNode.right = successor;
}
// 3、将后续的左节点改为被删除的左节点
successor.left = currentNode.left;
}
}
// 获取后续节点,即从要删除的节点的右边开始查找最小的值
getSuccessor(delNode) {
// 定义变量,保存要找到的后续
let successor = delNode;
let current = delNode.right;
let successorParent = delNode;
// 循环查找 current 的右子树节点
while (current !== null) {
successorParent = successor;
successor = current;
current = current.left;
}
// 判断寻找到的后续节点是否直接就是要删除节点的 right
if (successor !== delNode.right) {
successorParent.left = successor.right;
successor.right = delNode.right;
}
return successor;
}
}