-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdwutils.py
238 lines (181 loc) · 7.2 KB
/
dwutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
Utility functions for stochastic modeling of the double-well potential
Jared Callaham (2020)
"""
import numpy as np
import sympy
from scipy.optimize import curve_fit
import utils
import fpsolve
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import julia
jl = julia.Julia()
jl.include("../sim_doublewell.jl")
def switched_states(X, thresh=1):
# Decide whether the bistable states are "up" or "down" based on threshold
N = len(X)
state = np.zeros((N))
# Step forward until X is either positive or negative (if simulation is initialized at 0)
idx = 0
while abs(X[idx]) < thresh:
idx += 1
# Consider everything up to this point to be in the first well
cur_state = np.sign(X[idx])
state[:idx] = cur_state
while idx<N:
# Switch states after crossing threshold
if -cur_state*X[idx] > thresh:
cur_state = -cur_state
state[idx] = cur_state
idx += 1
return state
def dwell_times(states, dt=1):
# Given a vector of states (i.e. from switched_states() ), return dwell time in each state
N = len(states)
switch_times = [] # List of dwell times
idx = 0
last_switch = idx
cur_state = states[idx]
while idx < N:
if states[idx] != cur_state:
switch_times.append( dt*(idx-last_switch) )
last_switch = idx
cur_state = states[idx]
idx += 1
return switch_times
def dwell_stats(X, thresh, dt):
state = switched_states(X, thresh=thresh) # Categorize into "up" or "down"
switch_times = dwell_times(state, dt=dt) # Compute list of dwell times in each metastable state
if len(switch_times) > 0:
return np.mean(switch_times), np.std(switch_times)/np.sqrt(len(switch_times))
else:
return np.nan, np.nan
def fit_pdf(X, edges, p_hist, dt, p0=None):
# Mean-square displacement
fit_start, fit_stop = 0.1, 3
n_lags = int(fit_stop/dt)
tau = dt*np.arange(1, n_lags)
# Lagged mean square displacement
msd = np.zeros((len(tau)))
for i in range(1, n_lags):
msd[i-1] = np.mean( (X[i:]-X[:-i])**2)
# Linear fit for radial displacement
to_fit = np.nonzero( (tau > fit_start) * (tau < fit_stop) )[0]
p_rad = np.polyfit(tau[to_fit], msd[to_fit], deg=1)
a_pdf = 0.5*p_rad[0]
# Fit PDF
p_model = lambda x, C, a, b: C*np.exp(a*x**2 + b*x**4)
centers = 0.5*(edges[1:]+edges[:-1])
if p0 is not None:
popt, pcov = curve_fit(p_model, centers, p_hist, p0=p0)
else:
popt, pcov = curve_fit(p_model, centers, p_hist)
# Separate parameters in model
sigma_pdf = np.sqrt(2*a_pdf)
lamb_pdf = popt[1]*sigma_pdf**2
mu_pdf = popt[2]*2*sigma_pdf**2
return lamb_pdf, mu_pdf, sigma_pdf
def langevin_regression(X, edges, p_hist, dt, stride=200, kl_reg=0):
"""
Wrapper for full Langevin regression so we can loop over it to explore variations with distance from bifurcation
"""
centers = 0.5*(edges[1:]+edges[:-1])
N = len(centers)
# Kramers-Moyal average
tau = stride*dt
f_KM, a_KM, f_err, a_err = KM_avg(X, bins, stride=stride, dt=dt)
# Initialize libraries
x = sympy.symbols('x')
f_expr = np.array([x**i for i in [1, 3]]) # Polynomial library for drift
s_expr = np.array([x**i for i in [0]]) # Polynomial library for diffusion
lib_f = np.zeros([len(f_expr), N])
for k in range(len(f_expr)):
lamb_expr = sympy.lambdify(x, f_expr[k])
lib_f[k] = lamb_expr(centers)
lib_s = np.zeros([len(s_expr), N])
for k in range(len(s_expr)):
lamb_expr = sympy.lambdify(x, s_expr[k])
lib_s[k] = lamb_expr(centers)
# Initialize Xi with plain least-squares (just helpf the optimization a bit)
Xi0 = np.zeros((len(f_expr) + len(s_expr)))
mask = np.nonzero(np.isfinite(f_KM))[0]
Xi0[:len(f_expr)] = np.linalg.lstsq( lib_f[:, mask].T, f_KM[mask], rcond=None)[0]
Xi0[len(f_expr):] = np.linalg.lstsq( lib_s[:,mask].T, np.sqrt(2*a_KM[mask]), rcond=None)[0]
# Parameter dictionary for optimization
W = np.array((f_err.flatten(), a_err.flatten()))
W[np.less(abs(W), 1e-12, where=np.isfinite(W))] = 1e6 # Set zero entries to large weights
W[np.logical_not(np.isfinite(W))] = 1e6 # Set NaN entries to large numbers (small weights)
W = 1/W # Invert error for weights
W = W/np.nansum(W.flatten())
# Adjoint solver
afp = fpsolve.AdjFP(centers)
# Forward solver
fp = fpsolve.SteadyFP(N, centers[1]-centers[0])
params = {"W": W, "f_KM": f_KM, "a_KM": a_KM, "Xi0": Xi0,
"f_expr": f_expr, "s_expr": s_expr,
"lib_f": lib_f.T, "lib_s": lib_s.T, "N": N,
"kl_reg": kl_reg,
"fp": fp, "afp": afp, "p_hist": p_hist, "tau": tau,
"radial": False}
# Tune KL regularization automatically
Xi, _ = utils.AFP_opt(utils.cost, params)
return Xi
def model_eval(eps, sigma, N, kl_reg):
"""
Construct and evaluate all models of the double-well
1. Analytic normal form model
2. PDF fitting without Kramers-Moyal average
3. Full Langevin regression
"""
### Generate data
x_eq = np.sqrt(eps) # Equilibrium value
edges = np.linspace(-2*x_eq, 2*x_eq, N+1)
centers = 0.5*(edges[:-1]+edges[1:])
dx = centers[1]-centers[0]
dt = 1e-2
tmax = int(1e5)
t, X = jl.run_sim(eps, sigma, dt, tmax)
X, V = X[0, :], X[1, :]
# PDF of states
p_hist = np.histogram(X, edges, density=True)[0]
# Dwell-time slope
b, b_err = dwell_stats(X, x_eq, dt)
print("\tData: ", b, b_err)
### 1. Normal form
lamb1 = -1 + np.sqrt(1 + eps)
lamb2 = -1 - np.sqrt(1 + eps)
h = -lamb1/lamb2
mu = -(1+h)**2*lamb1/eps
_, phi1 = jl.run_nf(lamb1, mu, sigma/(2*np.sqrt(1+eps)), dt, tmax)
X_nf = (1+h)*phi1[0, :]
# Statistics
p_nf = np.histogram(X_nf, edges, density=True)[0]
b_nf, b_nf_err = dwell_stats(X_nf, x_eq, dt)
print("\tNormal form: ", b_nf, b_nf_err)
### 2. PDF fit
Xi = fit_pdf(X, edges, p_hist, dt, p0=[1, lamb1/sigma**2, mu/sigma**2])
#print(Xi)
# Monte Carlo evaluation
_, X_pdf = jl.run_nf(Xi[0], Xi[1], Xi[2], dt, tmax)
X_pdf = X_pdf[0, :]
# Statistics
p_pdf = np.histogram(X_pdf, edges, density=True)[0]
b_pdf, b_pdf_err = dwell_stats(X_pdf, x_eq, dt)
print("\tPDF fit: ", b_pdf, b_pdf_err)
### 3. Langevin regression
Xi = langevin_regression(X, edges, p_hist, dt, stride=200, kl_reg=kl_reg)
#print(Xi)
# Monte Carlo evaluation
_, X_lr = jl.run_nf(Xi[0], Xi[1], Xi[2], dt, tmax)
X_lr = X_lr[0, :]
# Statistics
p_lr = np.histogram(X_lr, edges, density=True)[0]
b_lr, b_lr_err = dwell_stats(X_lr, x_eq, dt)
print("\tLangevin regression: ", b_lr, b_lr_err)
### KL-divergence of all models against true data
KL_nf = utils.kl_divergence(p_hist, p_nf, dx=dx, tol=1e-6)
KL_pdf = utils.kl_divergence(p_hist, p_pdf, dx=dx, tol=1e-6)
KL_lr = utils.kl_divergence(p_hist, p_lr, dx=dx, tol=1e-6)
print("\tKL div: ", KL_nf, KL_pdf, KL_lr)
return [b, b_nf, b_pdf, b_lr], [KL_nf, KL_pdf, KL_lr]