forked from tsutterley/read-ICESat-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MPI_DEM_ICESat2_ATL03.py
906 lines (854 loc) · 45.4 KB
/
MPI_DEM_ICESat2_ATL03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
#!/usr/bin/env python
u"""
MPI_DEM_ICESat2_ATL03.py
Written by Tyler Sutterley (10/2019)
Determines which digital elevation model tiles to read for a given ATL03 file
Reads 3x3 array of tiles for points within bounding box of central mosaic tile
Interpolates digital elevation model to ICESat-2 ATL03 photon event locations
ArcticDEM 2m digital elevation model tiles
http://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/
http://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/indexes/
REMA 8m digital elevation model tiles
http://data.pgc.umn.edu/elev/dem/setsm/REMA/mosaic/v1.1/
http://data.pgc.umn.edu/elev/dem/setsm/REMA/indexes/
GIMP 30m digital elevation model tiles computed with nsidc_convert_GIMP_DEM.py
https://n5eil01u.ecs.nsidc.org/MEASURES/NSIDC-0645.001/
COMMAND LINE OPTIONS:
-D X, --directory=X: Working data directory
--model=X: Set the digital elevation model (REMA, ArcticDEM, GIMP) to run
-M X, --mode=X: Permission mode of directories and files created
-V, --verbose: Output information about each created file
REQUIRES MPI PROGRAM
MPI: standardized and portable message-passing system
https://www.open-mpi.org/
http://mpitutorial.com/
PYTHON DEPENDENCIES:
numpy: Scientific Computing Tools For Python
https://numpy.org
https://numpy.org/doc/stable/user/numpy-for-matlab-users.html
scipy: Scientific Tools for Python
https://docs.scipy.org/doc/
mpi4py: MPI for Python
http://pythonhosted.org/mpi4py/
http://mpi4py.readthedocs.org/en/stable/
h5py: Python interface for Hierarchal Data Format 5 (HDF5)
https://www.h5py.org
http://docs.h5py.org/en/stable/mpi.html
fiona: Python wrapper for vector data access functions from the OGR library
https://fiona.readthedocs.io/en/latest/manual.html
gdal: Pythonic interface to the Geospatial Data Abstraction Library (GDAL)
https://pypi.python.org/pypi/GDAL/
shapely: PostGIS-ish operations outside a database context for Python
http://toblerity.org/shapely/index.html
pyproj: Python interface to PROJ library
https://pypi.org/project/pyproj/
PROGRAM DEPENDENCIES:
convert_julian.py: returns the calendar date and time given a Julian date
count_leap_seconds.py: determines the number of leap seconds for a GPS time
REFERENCES:
https://www.pgc.umn.edu/guides/arcticdem/data-description/
https://www.pgc.umn.edu/guides/rema/data-description/
https://nsidc.org/data/nsidc-0645/versions/1
UPDATE HISTORY:
Updated 10/2019: using delta_time as output HDF5 variable dimensions
changing Y/N flags to True/False
Updated 09/2019: fiona for shapefile read. pyproj for coordinate conversion
can set the DEM model manually to use the GIMP DEM. verify DEM is finite
round DEM fill value when creating mask as some DEM tiles are incorrect
using date functions paralleling public repository. verify output DEM
Updated 06/2019: assign ArcticDEM by name attribute. buffer for sub-tiles
Updated 05/2019: free up memory from invalid tiles. buffer by more geosegs
include mean vertical residuals and number of ground control points
assign ArcticDEM polygons by objectid
Updated 04/2019: buffer DEM tiles using values from neighboring tiles
Forked 04/2019 from interp_DEM_triangulated_data.py
Updated 02/2019: python3 compatibility updates
Updated 01/2018: updated input regular expression to accept lagrangian files
Updated 06/2017: use actual geospatial lat/lon min and max in attributes
Updated 04/2017: updated for new triangulation processing chain
Written 03/2017
"""
from __future__ import print_function
import sys
import os
import re
import uuid
import h5py
import fiona
import getopt
import pyproj
import tarfile
import datetime
import osgeo.gdal
import numpy as np
from mpi4py import MPI
import scipy.interpolate
from shapely.geometry import MultiPoint, Polygon
from icesat2_toolkit.convert_julian import convert_julian
from icesat2_toolkit.count_leap_seconds import count_leap_seconds
#-- digital elevation models
elevation_dir = {}
elevation_tile_index = {}
#-- ArcticDEM
elevation_dir['ArcticDEM'] = ['ArcticDEM']
elevation_tile_index['ArcticDEM'] = 'ArcticDEM_Tile_Index_Rel7.zip'
#-- GIMP DEM
elevation_dir['GIMP'] = ['GIMP','30m']
elevation_tile_index['GIMP'] = 'gimpdem_Tile_Index_Rel1.1.zip'
#-- REMA DEM
elevation_dir['REMA'] = ['REMA']
elevation_tile_index['REMA'] = 'REMA_Tile_Index_Rel1.1.zip'
#-- PURPOSE: help module to describe the optional input parameters
def usage():
print('\nHelp: {}'.format(os.path.basename(sys.argv[0])))
print(' -D X, --directory=X\tWorking data directory')
print(' --model=X: Set the digital elevation model (REMA,ArcticDEM,GIMP)')
print(' -M X, --mode=X\t\tPermission mode of directories and files created')
print(' -V, --verbose\t\tOutput information about each created file\n')
#-- PURPOSE: keep track of MPI threads
def info(rank, size):
print('Rank {0:d} of {1:d}'.format(rank+1,size))
print('module name: {0}'.format(__name__))
if hasattr(os, 'getppid'):
print('parent process: {0:d}'.format(os.getppid()))
print('process id: {0:d}'.format(os.getpid()))
#-- PURPOSE: set the DEM model to interpolate based on the input granule
def set_DEM_model(GRANULE):
if GRANULE in ('10','11','12'):
DEM_MODEL = 'REMA'
elif GRANULE in ('02','03','04','05','06'):
DEM_MODEL = 'ArcticDEM'
return DEM_MODEL
#-- PURPOSE: read zip file containing index shapefiles for finding DEM tiles
def read_DEM_index(index_file, DEM_MODEL):
#-- read the compressed shapefile and extract entities
shape = fiona.open('zip://{0}'.format(os.path.expanduser(index_file)))
epsg = shape.crs['init']
#-- extract attribute indice for DEM tile (REMA,GIMP) or name (ArcticDEM)
if (DEM_MODEL == 'REMA'):
#-- REMA index file attributes:
#-- name: DEM mosaic name for tile (file name without suffix)
#-- tile: DEM tile identifier (IMy_IMx)
#-- nd_value: fill value for elements with no data
#-- resolution: DEM horizontal spatial resolution (meters)
#-- creationda: creation date
#-- raster: (empty)
#-- fileurl: link to file on PGC server
#-- spec_type: specific type (DEM)
#-- qual: density of scenes within tile (0 to 1)
#-- reg_src: DEM registration source (ICESat or neighbor align)
#-- num_gcps: number of ground control points
#-- meanresz: mean vertical residual (meters)
#-- active: (1)
#-- qc: (2)
#-- rel_ver: release version
#-- num_comp: number of components
#-- st_area_sh: tile area (meters^2)
#-- st_length_: perimeter length of tile (meters)
field = 'tile'
elif (DEM_MODEL == 'GIMP'):
#-- GIMP index file attributes (from make_GIMP_tile_shapefile.py):
#-- name: DEM mosaic name for tile (file name without suffix)
#-- tile: DEM tile identifier (IMy_IMx)
#-- nd_value: fill value for elements with no data
#-- resolution: DEM horizontal spatial resolution (meters)
#-- fileurl: link to file on NSIDC server
#-- spec_type: specific type (DEM)
#-- reg_src: DEM registration source (ICESat or neighbor align)
#-- rel_ver: release version
#-- num_comp: number of components
#-- st_area_sh: tile area (meters^2)
#-- st_length_: perimeter length of tile (meters)
field = 'tile'
elif (DEM_MODEL == 'ArcticDEM'):
#-- ArcticDEM index file attributes:
#-- objectid: DEM tile object identifier for sub-tile
#-- name: DEM mosaic name for sub-tile (file name without suffix)
#-- tile: DEM tile identifier (IMy_IMx) (non-unique for sub-tiles)
#-- nd_value: fill value for elements with no data
#-- resolution: DEM horizontal spatial resolution (meters)
#-- creationda: creation date
#-- raster: (empty)
#-- fileurl: link to file on PGC server
#-- spec_type: specific type (DEM)
#-- qual: density of scenes within tile (0 to 1)
#-- reg_src: DEM registration source (ICESat or neighbor align)
#-- num_gcps: number of ground control points
#-- meanresz: mean vertical residual (meters)
#-- active: (1)
#-- qc: (2)
#-- rel_ver: release version
#-- num_comp: number of components
#-- st_area_sh: tile area (meters^2)
#-- st_length_: perimeter length of tile (meters)
field = 'name'
#-- create python dictionary for each polygon object
poly_dict = {}
attrs_dict = {}
#-- extract the entities and assign by tile name
for i,ent in enumerate(shape.values()):
#-- tile or name attributes
if DEM_MODEL in ('REMA','GIMP'):
tile = str(ent['properties'][field])
else:
tile, = re.findall(r'^(\d+_\d+_\d+_\d+)',ent['properties'][field])
#-- extract attributes and assign by tile
attrs_dict[tile] = {}
for key,val in ent['properties'].items():
attrs_dict[tile][key] = val
#-- upper-left, upper-right, lower-right, lower-left, upper-left
ul,ur,lr,ll,ul2 = ent['geometry']['coordinates'].pop()
#-- tile boundaries
attrs_dict[tile]['xmin'] = ul[0]
attrs_dict[tile]['xmax'] = lr[0]
attrs_dict[tile]['ymin'] = lr[1]
attrs_dict[tile]['ymax'] = ul[1]
#-- extract Polar Stereographic coordinates for entity
x = [ul[0],ur[0],lr[0],ll[0],ul2[0]]
y = [ul[1],ur[1],lr[1],ll[1],ul2[1]]
poly_obj = Polygon(list(zip(x,y)))
#-- Valid Polygon may not possess overlapping exterior or interior rings
if (not poly_obj.is_valid):
poly_obj = poly_obj.buffer(0)
poly_dict[tile] = poly_obj
#-- close the file
shape.close()
#-- return the dictionaries of polygon objects and attributes
return (poly_dict,attrs_dict,epsg)
#-- PURPOSE: read DEM tile file from gzipped tar files
def read_DEM_file(elevation_file, nd_value):
#-- open file with tarfile (read)
tar = tarfile.open(name=elevation_file, mode='r:gz')
#-- find dem geotiff file within tar file
member, = [m for m in tar.getmembers() if re.search('dem\.tif',m.name)]
#-- use GDAL memory-mapped file to read dem
mmap_name = "/vsimem/{0}".format(uuid.uuid4().hex)
osgeo.gdal.FileFromMemBuffer(mmap_name, tar.extractfile(member).read())
ds = osgeo.gdal.Open(mmap_name)
#-- read data matrix
im = ds.GetRasterBand(1).ReadAsArray()
fill_value = ds.GetRasterBand(1).GetNoDataValue()
fill_value = 0.0 if (fill_value is None) else fill_value
#-- get dimensions
xsize = ds.RasterXSize
ysize = ds.RasterYSize
#-- create mask for finding invalid values
mask = np.zeros((ysize,xsize),dtype=np.bool)
indy,indx = np.nonzero((im == fill_value) | (~np.isfinite(im)) |
(np.ceil(im) == np.ceil(fill_value)))
mask[indy,indx] = True
#-- verify that values are finite by replacing with nd_value
im[indy,indx] = nd_value
#-- get geotiff info
info_geotiff = ds.GetGeoTransform()
#-- calculate image extents
xmin = info_geotiff[0]
ymax = info_geotiff[3]
xmax = xmin + (xsize-1)*info_geotiff[1]
ymin = ymax + (ysize-1)*info_geotiff[5]
#-- close files
ds = None
osgeo.gdal.Unlink(mmap_name)
tar.close()
#-- create image x and y arrays
xi = np.arange(xmin,xmax+info_geotiff[1],info_geotiff[1])
yi = np.arange(ymax,ymin+info_geotiff[5],info_geotiff[5])
#-- return values (flip y values to be monotonically increasing)
return (im[::-1,:],mask[::-1,:],xi,yi[::-1])
#-- PURPOSE: read DEM tile file from gzipped tar files to buffer main tile
def read_DEM_buffer(elevation_file, xlimits, ylimits, nd_value):
#-- open file with tarfile (read)
tar = tarfile.open(name=elevation_file, mode='r:gz')
#-- find dem geotiff file within tar file
member, = [m for m in tar.getmembers() if re.search('dem\.tif',m.name)]
#-- use GDAL memory-mapped file to read dem
mmap_name = "/vsimem/{0}".format(uuid.uuid4().hex)
osgeo.gdal.FileFromMemBuffer(mmap_name, tar.extractfile(member).read())
ds = osgeo.gdal.Open(mmap_name)
#-- get geotiff info
info_geotiff = ds.GetGeoTransform()
#-- original image extents
xmin = info_geotiff[0]
ymax = info_geotiff[3]
#-- reduce input image with GDAL
#-- Specify offset and rows and columns to read
xoffset = np.int((xlimits[0] - xmin)/info_geotiff[1])
yoffset = np.int((ymax - ylimits[1])/np.abs(info_geotiff[5]))
xcount = np.int((xlimits[1] - xlimits[0])/info_geotiff[1]) + 1
ycount = np.int((ylimits[1] - ylimits[0])/np.abs(info_geotiff[5])) + 1
#-- read data matrix
im = ds.GetRasterBand(1).ReadAsArray(xoffset, yoffset, xcount, ycount)
fill_value = ds.GetRasterBand(1).GetNoDataValue()
fill_value = 0.0 if (fill_value is None) else fill_value
#-- create mask for finding invalid values
mask = np.zeros((ycount,xcount))
indy,indx = np.nonzero((im == fill_value) | (~np.isfinite(im)) |
(np.ceil(im) == np.ceil(fill_value)))
mask[indy,indx] = True
#-- verify that values are finite by replacing with nd_value
im[indy,indx] = nd_value
#-- reduced x and y limits of image
xmin_reduced = xmin + xoffset*info_geotiff[1]
xmax_reduced = xmin + xoffset*info_geotiff[1] + (xcount-1)*info_geotiff[1]
ymax_reduced = ymax + yoffset*info_geotiff[5]
ymin_reduced = ymax + yoffset*info_geotiff[5] + (ycount-1)*info_geotiff[5]
#-- close files
ds = None
osgeo.gdal.Unlink(mmap_name)
tar.close()
#-- create image x and y arrays
xi = np.arange(xmin_reduced,xmax_reduced+info_geotiff[1],info_geotiff[1])
yi = np.arange(ymax_reduced,ymin_reduced+info_geotiff[5],info_geotiff[5])
#-- return values (flip y values to be monotonically increasing)
return (im[::-1,:],mask[::-1,:],xi,yi[::-1])
#-- PURPOSE: read ICESat-2 ATL03 data from NSIDC
#-- interpolate DEM data to x and y coordinates
def main():
#-- start MPI communicator
comm = MPI.COMM_WORLD
#-- Read the system arguments listed after the program
long_options=['help','directory=','model=','mode=','verbose']
optlist,arglist = getopt.getopt(sys.argv[1:], 'hD:M:V', long_options)
#-- working data directory for location of DEM files
base_dir = os.getcwd()
#-- set the DEM model to run for a given granule (else set automatically)
DEM_MODEL = None
#-- verbosity settings
VERBOSE = False
#-- permissions mode of the local files (number in octal)
MODE = 0o775
for opt, arg in optlist:
if opt in ('-h','--help'):
usage() if (comm.rank==0) else None
sys.exit()
elif opt in ("-D","--directory"):
base_dir = os.path.expanduser(arg)
elif opt in ("--model"):
DEM_MODEL = arg
elif opt in ("-V","--verbose"):
#-- output module information for process
info(comm.rank,comm.size)
VERBOSE = True
elif opt in ("-M","--mode"):
MODE = int(arg, 8)
#-- enter HDF5 file as system argument
if not arglist:
raise IOError('No input file entered as system arguments')
#-- tilde-expansion of listed input file
FILE = os.path.expanduser(arglist[0])
#-- read data from input file
print('{0} -->'.format(FILE)) if (VERBOSE and (comm.rank==0)) else None
#-- Open the HDF5 file for reading
fileID = h5py.File(FILE, 'r', driver='mpio', comm=comm)
DIRECTORY = os.path.dirname(FILE)
#-- extract parameters from ICESat-2 ATLAS HDF5 file name
rx = re.compile('(processed_)?(ATL\d{2})_(\d{4})(\d{2})(\d{2})(\d{2})'
'(\d{2})(\d{2})_(\d{4})(\d{2})(\d{2})_(\d{3})_(\d{2})(.*?).h5$')
SUB,PRD,YY,MM,DD,HH,MN,SS,TRK,CYCL,GRAN,RL,VERS,AUX = rx.findall(FILE).pop()
#-- set the digital elevation model based on ICESat-2 granule
DEM_MODEL = set_DEM_model(GRAN) if (DEM_MODEL is None) else DEM_MODEL
#-- regular expression pattern for extracting parameters from ArcticDEM name
rx1 = re.compile('(\d+)_(\d+)_(\d+)_(\d+)_(\d+m)_(.*?)$', re.VERBOSE)
#-- full path to DEM directory
elevation_directory=os.path.join(base_dir,*elevation_dir[DEM_MODEL])
#-- zip file containing index shapefiles for finding DEM tiles
index_file=os.path.join(elevation_directory,elevation_tile_index[DEM_MODEL])
#-- read data on rank 0
if (comm.rank == 0):
#-- read index file for determining which tiles to read
tile_dict,tile_attrs,tile_epsg = read_DEM_index(index_file,DEM_MODEL)
else:
#-- create empty object for list of shapely objects
tile_dict = None
tile_attrs = None
tile_epsg = None
#-- Broadcast Shapely polygon objects
tile_dict = comm.bcast(tile_dict, root=0)
tile_attrs = comm.bcast(tile_attrs, root=0)
tile_epsg = comm.bcast(tile_epsg, root=0)
#-- read each input beam within the file
IS2_atl03_beams = [k for k in fileID.keys() if bool(re.match(r'gt\d[lr]',k))]
#-- copy variables for outputting to HDF5 file
IS2_atl03_dem = {}
IS2_atl03_fill = {}
IS2_atl03_dem_attrs = {}
#-- number of GPS seconds between the GPS epoch (1980-01-06T00:00:00Z UTC)
#-- and ATLAS Standard Data Product (SDP) epoch (2018-01-01T00:00:00Z UTC)
#-- Add this value to delta time parameters to compute full gps_seconds
IS2_atl03_dem['ancillary_data'] = {}
IS2_atl03_dem_attrs['ancillary_data'] = {}
for key in ['atlas_sdp_gps_epoch']:
#-- get each HDF5 variable
IS2_atl03_dem['ancillary_data'][key] = fileID['ancillary_data'][key][:]
#-- Getting attributes of group and included variables
IS2_atl03_dem_attrs['ancillary_data'][key] = {}
for att_name,att_val in fileID['ancillary_data'][key].attrs.items():
IS2_atl03_dem_attrs['ancillary_data'][key][att_name] = att_val
#-- for each input beam within the file
for gtx in sorted(IS2_atl03_beams):
#-- output data dictionaries for beam
IS2_atl03_dem[gtx] = dict(heights={},subsetting={})
IS2_atl03_fill[gtx] = dict(heights={},subsetting={})
IS2_atl03_dem_attrs[gtx] = dict(heights={},subsetting={})
#-- number of photon events
n_pe, = fileID[gtx]['heights']['h_ph'].shape
#-- invalid value
fv = fileID[gtx]['geolocation']['sigma_h'].fillvalue
#-- define indices to run for specific process
ind = np.arange(comm.Get_rank(), n_pe, comm.Get_size(), dtype=np.int)
#-- extract delta time
delta_time = fileID[gtx]['heights']['delta_time'][:]
#-- extract lat/lon
longitude = fileID[gtx]['heights']['lon_ph'][:]
latitude = fileID[gtx]['heights']['lat_ph'][:]
#-- output interpolated digital elevation model
distributed_dem = np.ma.zeros((n_pe),fill_value=fv,dtype=np.float32)
distributed_dem.mask = np.ones((n_pe),dtype=np.bool)
dem_h = np.ma.zeros((n_pe),fill_value=fv,dtype=np.float32)
dem_h.mask = np.ones((n_pe),dtype=np.bool)
#-- convert tile projection from latitude longitude to tile EPSG
proj1 = pyproj.Proj("+init=EPSG:{0:d}".format(4326))
proj2 = pyproj.Proj("+init={0}".format(tile_epsg))
X,Y = pyproj.transform(proj1, proj2, longitude, latitude)
#-- convert reduced x and y to shapely multipoint object
xy_point = MultiPoint(list(zip(X[ind], Y[ind])))
#-- create complete masks for each DEM tile
associated_map = {}
for key,poly_obj in tile_dict.items():
#-- create empty intersection map array for distributing
distributed_map = np.zeros((n_pe),dtype=np.int)
#-- create empty intersection map array for receiving
associated_map[key] = np.zeros((n_pe),dtype=np.int)
#-- finds if points are encapsulated (within tile)
int_test = poly_obj.intersects(xy_point)
if int_test:
#-- extract intersected points
int_map = list(map(poly_obj.intersects,xy_point))
int_indices, = np.nonzero(int_map)
#-- set distributed_map indices to True for intersected points
distributed_map[ind[int_indices]] = True
#-- communicate output MPI matrices between ranks
#-- operation is a logical "or" across the elements.
comm.Allreduce(sendbuf=[distributed_map, MPI.BOOL], \
recvbuf=[associated_map[key], MPI.BOOL], op=MPI.LOR)
distributed_map = None
#-- wait for all processes to finish calculation
comm.Barrier()
#-- find valid tiles and free up memory from invalid tiles
valid_tiles = [k for k,v in associated_map.items() if v.any()]
invalid_tiles = sorted(set(associated_map.keys()) - set(valid_tiles))
for key in invalid_tiles:
associated_map[key] = None
#-- group attributes for beam
IS2_atl03_dem_attrs[gtx]['Description'] = fileID[gtx].attrs['Description']
IS2_atl03_dem_attrs[gtx]['atlas_pce'] = fileID[gtx].attrs['atlas_pce']
IS2_atl03_dem_attrs[gtx]['atlas_beam_type'] = fileID[gtx].attrs['atlas_beam_type']
IS2_atl03_dem_attrs[gtx]['groundtrack_id'] = fileID[gtx].attrs['groundtrack_id']
IS2_atl03_dem_attrs[gtx]['atmosphere_profile'] = fileID[gtx].attrs['atmosphere_profile']
IS2_atl03_dem_attrs[gtx]['atlas_spot_number'] = fileID[gtx].attrs['atlas_spot_number']
IS2_atl03_dem_attrs[gtx]['sc_orientation'] = fileID[gtx].attrs['sc_orientation']
#-- group attributes for heights
IS2_atl03_dem_attrs[gtx]['heights']['Description'] = ("Contains arrays of the "
"parameters for each received photon.")
IS2_atl03_dem_attrs[gtx]['heights']['data_rate'] = ("Data are stored at the "
"photon detection rate.")
#-- geolocation, time and segment ID
#-- delta time
IS2_atl03_dem[gtx]['heights']['delta_time'] = delta_time
IS2_atl03_fill[gtx]['heights']['delta_time'] = None
IS2_atl03_dem_attrs[gtx]['heights']['delta_time'] = {}
IS2_atl03_dem_attrs[gtx]['heights']['delta_time']['units'] = "seconds since 2018-01-01"
IS2_atl03_dem_attrs[gtx]['heights']['delta_time']['long_name'] = "Elapsed GPS seconds"
IS2_atl03_dem_attrs[gtx]['heights']['delta_time']['standard_name'] = "time"
IS2_atl03_dem_attrs[gtx]['heights']['delta_time']['calendar'] = "standard"
IS2_atl03_dem_attrs[gtx]['heights']['delta_time']['description'] = ("Number of GPS "
"seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset "
"is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds "
"between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By "
"adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the "
"time in gps_seconds relative to the GPS epoch can be computed.")
IS2_atl03_dem_attrs[gtx]['heights']['delta_time']['coordinates'] = \
"lat_ph lon_ph"
#-- latitude
IS2_atl03_dem[gtx]['heights']['latitude'] = latitude
IS2_atl03_fill[gtx]['heights']['latitude'] = None
IS2_atl03_dem_attrs[gtx]['heights']['latitude'] = {}
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['units'] = "degrees_north"
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['contentType'] = "physicalMeasurement"
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['long_name'] = "Latitude"
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['standard_name'] = "latitude"
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['description'] = ("Latitude of each "
"received photon. Computed from the ECF Cartesian coordinates of the bounce point.")
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['valid_min'] = -90.0
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['valid_max'] = 90.0
IS2_atl03_dem_attrs[gtx]['heights']['latitude']['coordinates'] = \
"delta_time lon_ph"
#-- longitude
IS2_atl03_dem[gtx]['heights']['longitude'] = longitude
IS2_atl03_fill[gtx]['heights']['longitude'] = None
IS2_atl03_dem_attrs[gtx]['heights']['longitude'] = {}
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['units'] = "degrees_east"
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['contentType'] = "physicalMeasurement"
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['long_name'] = "Longitude"
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['standard_name'] = "longitude"
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['description'] = ("Longitude of each "
"received photon. Computed from the ECF Cartesian coordinates of the bounce point.")
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['valid_min'] = -180.0
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['valid_max'] = 180.0
IS2_atl03_dem_attrs[gtx]['heights']['longitude']['coordinates'] = \
"delta_time lat_ph"
#-- subsetting variables
IS2_atl03_dem_attrs[gtx]['subsetting']['Description'] = ("The subsetting group "
"contains parameters used to reduce photon events to specific regions of interest.")
IS2_atl03_dem_attrs[gtx]['subsetting']['data_rate'] = ("Data are stored at the photon "
"detection rate.")
#-- for each valid tile
for key in valid_tiles:
#-- output mask to HDF5
IS2_atl03_dem[gtx]['subsetting'][key] = associated_map[key]
IS2_atl03_fill[gtx]['subsetting'][key] = None
IS2_atl03_dem_attrs[gtx]['subsetting'][key] = {}
IS2_atl03_dem_attrs[gtx]['subsetting'][key]['contentType'] = "referenceInformation"
IS2_atl03_dem_attrs[gtx]['subsetting'][key]['long_name'] = '{0} Mask'.format(key)
IS2_atl03_dem_attrs[gtx]['land_ice_segments']['subsetting'][key]['description'] = ('Name '
'of DEM tile {0} encapsulating the land ice segments.').format(tile_attrs[key]['tile'])
IS2_atl03_dem_attrs[gtx]['subsetting'][key]['source'] = DEM_MODEL
#-- add DEM attributes
if DEM_MODEL in ('REMA','ArcticDEM'):
IS2_atl03_dem_attrs[gtx]['subsetting'][key]['sigma_h'] = tile_attrs[key]['meanresz']
IS2_atl03_dem_attrs[gtx]['subsetting'][key]['n_gcp'] = tile_attrs[key]['num_gcps']
IS2_atl03_dem_attrs[gtx]['subsetting'][key]['coordinates'] = \
"../heights/delta_time ../heights/lat_ph ../heights/lon_ph"
#-- read and interpolate DEM to coordinates in parallel
for t in range(comm.Get_rank(), len(valid_tiles), comm.Get_size()):
key = valid_tiles[t]
sub = tile_attrs[key]['tile']
name = tile_attrs[key]['name']
#-- read central DEM file (geotiff within gzipped tar file)
tar = '{0}.tar.gz'.format(name)
elevation_file = os.path.join(elevation_directory,sub,tar)
DEM,MASK,xi,yi = read_DEM_file(elevation_file,fv)
#-- buffer DEM using values from adjacent tiles
#-- use 200m (10 geosegs and divisible by ArcticDEM and REMA pixels)
#-- use 750m for GIMP
bf = 750 if (DEM_MODEL == 'GIMP') else 200
ny,nx = np.shape(DEM)
dx = np.abs(xi[1]-xi[0]).astype('i')
dy = np.abs(yi[1]-yi[0]).astype('i')
#-- new buffered DEM and mask
d = np.full((ny+2*bf//dy,nx+2*bf//dx),fv,dtype=np.float32)
m = np.ones((ny+2*bf//dy,nx+2*bf//dx),dtype=np.bool)
d[bf//dy:-bf//dy,bf//dx:-bf//dx] = DEM.copy()
m[bf//dy:-bf//dy,bf//dx:-bf//dx] = MASK.copy()
DEM,MASK = (None,None)
#-- new buffered image x and y coordinates
x = (xi[0] - bf) + np.arange((nx+2*bf//dx))*dx
y = (yi[0] - bf) + np.arange((ny+2*bf//dy))*dy
#-- min and max of left column, center column, right column
XL,XC,XR = [[xi[0]-bf,xi[0]-dx],[xi[0],xi[-1]],[xi[-1]+dx,xi[-1]+bf]]
xlimits = [XL,XL,XL,XC,XC,XR,XR,XR] #-- LLLCCRRR
#-- min and max of bottom row, middle row, top row
YB,YM,YT = [[yi[0]-bf,yi[0]-dy],[yi[0],yi[-1]],[yi[-1]+dy,yi[-1]+bf]]
ylimits = [YB,YM,YT,YB,YT,YB,YM,YT] #-- BMTBTBMT
#-- buffer using neighbor tiles (REMA/GIMP) or sub-tiles (ArcticDEM)
if (DEM_MODEL == 'REMA'):
#-- REMA tiles to read to buffer the image
IMy,IMx = np.array(re.findall('(\d+)_(\d+)',sub).pop(),dtype='i')
#-- neighboring tiles for buffering DEM (LB,LM,LT,CB,CT,RB,RM,RT)
xtiles = [IMx-1,IMx-1,IMx-1,IMx,IMx,IMx+1,IMx+1,IMx+1] #-- LLLCCRRR
ytiles = [IMy-1,IMy,IMy+1,IMy-1,IMy+1,IMy-1,IMy,IMy+1] #-- BMTBTBMT
for xtl,ytl,xlim,ylim in zip(xtiles,ytiles,xlimits,ylimits):
#-- read DEM file (geotiff within gzipped tar file)
bkey = '{0:02d}_{1:02d}'.format(ytl,xtl)
#-- if buffer file is a valid tile within the DEM
#-- if file doesn't exist: will be all fill value with all mask
if bkey in tile_attrs.keys():
bsub = tile_attrs[bkey]['tile']
btar = '{0}.tar.gz'.format(tile_attrs[bkey]['name'])
buffer_file = os.path.join(elevation_directory,bkey,btar)
if not os.access(buffer_file, os.F_OK):
raise IOError('{0} not found'.format(buffer_file))
DEM,MASK,x1,y1=read_DEM_buffer(buffer_file,xlim,ylim,fv)
xmin = np.int((x1[0] - x[0])//dx)
xmax = np.int((x1[-1] - x[0])//dx) + 1
ymin = np.int((y1[0] - y[0])//dy)
ymax = np.int((y1[-1] - y[0])//dy) + 1
#-- add to buffered DEM and mask
d[ymin:ymax,xmin:xmax] = DEM.copy()
m[ymin:ymax,xmin:xmax] = MASK.copy()
DEM,MASK = (None,None)
elif (DEM_MODEL == 'GIMP'):
#-- GIMP tiles to read to buffer the image
IMx,IMy = np.array(re.findall('(\d+)_(\d+)',sub).pop(),dtype='i')
#-- neighboring tiles for buffering DEM (LB,LM,LT,CB,CT,RB,RM,RT)
xtiles = [IMx-1,IMx-1,IMx-1,IMx,IMx,IMx+1,IMx+1,IMx+1] #-- LLLCCRRR
ytiles = [IMy-1,IMy,IMy+1,IMy-1,IMy+1,IMy-1,IMy,IMy+1] #-- BMTBTBMT
for xtl,ytl,xlim,ylim in zip(xtiles,ytiles,xlimits,ylimits):
#-- read DEM file (geotiff within gzipped tar file)
bkey = '{0:d}_{1:d}'.format(xtl,ytl)
#-- if buffer file is a valid tile within the DEM
#-- if file doesn't exist: will be all fill value with all mask
if bkey in tile_attrs.keys():
bsub = tile_attrs[bkey]['tile']
btar = '{0}.tar.gz'.format(tile_attrs[bkey]['name'])
buffer_file = os.path.join(elevation_directory,bkey,btar)
if not os.access(buffer_file, os.F_OK):
raise IOError('{0} not found'.format(buffer_file))
DEM,MASK,x1,y1=read_DEM_buffer(buffer_file,xlim,ylim,fv)
xmin = np.int((x1[0] - x[0])//dx)
xmax = np.int((x1[-1] - x[0])//dx) + 1
ymin = np.int((y1[0] - y[0])//dy)
ymax = np.int((y1[-1] - y[0])//dy) + 1
#-- add to buffered DEM and mask
d[ymin:ymax,xmin:xmax] = DEM.copy()
m[ymin:ymax,xmin:xmax] = MASK.copy()
DEM,MASK = (None,None)
elif (DEM_MODEL == 'ArcticDEM'):
#-- ArcticDEM sub-tiles to read to buffer the image
#-- extract parameters from tile filename
IMy,IMx,STx,STy,res,vers = rx1.findall(name).pop()
IMy,IMx,STx,STy = np.array([IMy,IMx,STx,STy],dtype='i')
#-- neighboring tiles for buffering DEM (LB,LM,LT,CB,CT,RB,RM,RT)
#-- LLLCCRRR
xtiles = [IMx+(STx-2)//2,IMx+(STx-2)//2,IMx+(STx-2)//2,IMx,IMx,
IMx+STx//2,IMx+STx//2,IMx+STx//2]
xsubtiles = [(STx-2) % 2 + 1,(STx-2) % 2 + 1,(STx-2) % 2 + 1,
STx,STx,STx % 2 + 1,STx % 2 + 1,STx % 2 + 1]
#-- BMTBTBMT
ytiles = [IMy+(STy-2)//2,IMy,IMy+STy//2,IMy+(STy-2)//2,
IMy+STy//2,IMy+(STy-2)//2,IMy,IMy+STy//2]
ysubtiles = [(STy-2) % 2 + 1,STy,STy % 2 + 1,(STy-2) % 2 + 1,
STy % 2 + 1,(STy-2) % 2 + 1,STy,STy % 2 + 1]
#-- for each buffer tile and sub-tile
kwargs = (xtiles,ytiles,xsubs,ysubs,xlimits,ylimits)
for xtl,ytl,xs,ys,xlim,ylim in zip(*kwargs):
#-- read DEM file (geotiff within gzipped tar file)
args = (ytl,xtl,xs,ys,res,vers)
bkey = '{0:02d}_{1:02d}_{2}_{3}'.format(*args)
#-- if buffer file is a valid sub-tile within the DEM
#-- if file doesn't exist: all fill value with all mask
if bkey in tile_attrs.keys():
bsub = tile_attrs[bkey]['tile']
btar = '{0}.tar.gz'.format(tile_attrs[bkey]['name'])
buffer_file = os.path.join(elevation_directory,bsub,btar)
if not os.access(buffer_file, os.F_OK):
raise IOError('{0} not found'.format(buffer_file))
DEM,MASK,x1,y1=read_DEM_buffer(buffer_file,xlim,ylim,fv)
xmin = np.int((x1[0] - x[0])//dx)
xmax = np.int((x1[-1] - x[0])//dx) + 1
ymin = np.int((y1[0] - y[0])//dy)
ymax = np.int((y1[-1] - y[0])//dy) + 1
#-- add to buffered DEM and mask
d[ymin:ymax,xmin:xmax] = DEM.copy()
m[ymin:ymax,xmin:xmax] = MASK.copy()
DEM,MASK = (None,None)
#-- indices of x and y coordinates within tile
tile_indices, = np.nonzero(associated_map[key])
#-- use spline interpolation to calculate DEM values at coordinates
f1 = scipy.interpolate.RectBivariateSpline(x,y,d.T,kx=1,ky=1)
f2 = scipy.interpolate.RectBivariateSpline(x,y,m.T,kx=1,ky=1)
dataout = f1.ev(X[tile_indices],Y[tile_indices])
maskout = f2.ev(X[tile_indices],Y[tile_indices])
#-- save DEM to output variables
distributed_dem.data[tile_indices] = dataout
distributed_dem.mask[tile_indices] = maskout.astype(np.bool)
#-- clear DEM and mask variables
f1,f2,dataout,maskout,d,m = (None,None,None,None,None,None)
#-- communicate output MPI matrices between ranks
#-- operations are element summations and logical "and" across elements
comm.Allreduce(sendbuf=[distributed_dem.data, MPI.FLOAT], \
recvbuf=[dem_h.data, MPI.FLOAT], op=MPI.SUM)
comm.Allreduce(sendbuf=[distributed_dem.mask, MPI.BOOL], \
recvbuf=[dem_h.mask, MPI.BOOL], op=MPI.LAND)
distributed_dem = None
#-- wait for all distributed processes to finish for beam
comm.Barrier()
#-- output interpolated DEM to HDF5
dem_h.mask[np.abs(dem_h.data) >= 1e4] = True
dem_h.data[dem_h.mask] = dem_h.fill_value
IS2_atl03_dem[gtx]['heights']['dem_h'] = dem_h
IS2_atl03_fill[gtx]['heights']['dem_h'] = dem_h.fill_value
IS2_atl03_dem_attrs[gtx]['heights']['dem_h'] = {}
IS2_atl03_dem_attrs[gtx]['heights']['dem_h']['units'] = "meters"
IS2_atl03_dem_attrs[gtx]['heights']['dem_h']['contentType'] = "referenceInformation"
IS2_atl03_dem_attrs[gtx]['heights']['dem_h']['long_name'] = "DEM Height"
IS2_atl03_dem_attrs[gtx]['heights']['dem_h']['description'] = ("Height of the DEM, "
"interpolated by cubic-spline interpolation in the DEM coordinate system to the "
"PE location.")
IS2_atl03_dem_attrs[gtx]['heights']['dem_h']['source'] = DEM_MODEL
IS2_atl03_dem_attrs[gtx]['heights']['dem_h']['coordinates'] = \
"delta_time lat_ph lon_ph"
#-- parallel h5py I/O does not support compression filters at this time
if (comm.rank == 0) and bool(valid_tiles):
#-- output HDF5 files with output masks
args = (PRD,DEM_MODEL,YY,MM,DD,HH,MN,SS,TRK,CYCL,GRAN,RL,VERS,AUX)
file_format='{0}_{1}_{2}{3}{4}{5}{6}{7}_{8}{9}{10}_{11}_{12}{13}.h5'
#-- print file information
print('\t{0}'.format(file_format.format(*args))) if VERBOSE else None
HDF5_ATL03_dem_write(IS2_atl03_dem, IS2_atl03_dem_attrs, CLOBBER=True,
INPUT=os.path.basename(FILE), FILL_VALUE=IS2_atl03_fill,
FILENAME=os.path.join(DIRECTORY,file_format.format(*args)))
#-- change the permissions mode
os.chmod(os.path.join(DIRECTORY,file_format.format(*args)), MODE)
#-- close the input file
fileID.close()
#-- PURPOSE: outputting the interpolated DEM data for ICESat-2 data to HDF5
def HDF5_ATL03_dem_write(IS2_atl03_dem, IS2_atl03_attrs, INPUT=None,
FILENAME='', FILL_VALUE=None, CLOBBER=True):
#-- setting HDF5 clobber attribute
if CLOBBER:
clobber = 'w'
else:
clobber = 'w-'
#-- open output HDF5 file
fileID = h5py.File(os.path.expanduser(FILENAME), clobber)
#-- create HDF5 records
h5 = {}
#-- number of GPS seconds between the GPS epoch (1980-01-06T00:00:00Z UTC)
#-- and ATLAS Standard Data Product (SDP) epoch (2018-01-01T00:00:00Z UTC)
h5['ancillary_data'] = {}
for k,v in IS2_atl03_dem['ancillary_data'].items():
#-- Defining the HDF5 dataset variables
val = 'ancillary_data/{0}'.format(k)
h5['ancillary_data'][k] = fileID.create_dataset(val, np.shape(v), data=v,
dtype=v.dtype, compression='gzip')
#-- add HDF5 variable attributes
for att_name,att_val in IS2_atl03_attrs['ancillary_data'][k].items():
h5['ancillary_data'][k].attrs[att_name] = att_val
#-- write each output beam
beams = [k for k in IS2_atl03_dem.keys() if bool(re.match(r'gt\d[lr]',k))]
for gtx in beams:
fileID.create_group(gtx)
#-- add HDF5 group attributes for beam
for att_name in ['Description','atlas_pce','atlas_beam_type',
'groundtrack_id','atmosphere_profile','atlas_spot_number',
'sc_orientation']:
fileID[gtx].attrs[att_name] = IS2_atl03_attrs[gtx][att_name]
#-- create heights group
fileID[gtx].create_group('heights')
h5[gtx] = dict(heights={})
for att_name in ['Description','data_rate']:
att_val = IS2_atl03_attrs[gtx]['heights'][att_name]
fileID[gtx]['heights'].attrs[att_name] = att_val
#-- delta_time
v = IS2_atl03_dem[gtx]['heights']['delta_time']
attrs = IS2_atl03_attrs[gtx]['heights']['delta_time']
#-- Defining the HDF5 dataset variables
val = '{0}/{1}/{2}'.format(gtx,'heights','delta_time')
h5[gtx]['heights']['delta_time'] = fileID.create_dataset(val,
np.shape(v), data=v, dtype=v.dtype, compression='gzip')
#-- add HDF5 variable attributes
for att_name,att_val in attrs.items():
h5[gtx]['heights']['delta_time'].attrs[att_name] = att_val
#-- geolocation and height variables
for k in ['latitude','longitude','dem_h']:
#-- values and attributes
v = IS2_atl03_dem[gtx]['heights'][k]
attrs = IS2_atl03_attrs[gtx]['heights'][k]
fillvalue = FILL_VALUE[gtx]['heights'][k]
#-- Defining the HDF5 dataset variables
val = '{0}/{1}/{2}'.format(gtx,'heights',k)
if fillvalue:
h5[gtx]['heights'][k] = fileID.create_dataset(val, np.shape(v),
data=v,dtype=v.dtype,fillvalue=fillvalue,compression='gzip')
else:
h5[gtx]['heights'][k] = fileID.create_dataset(val, np.shape(v),
data=v, dtype=v.dtype, compression='gzip')
#-- attach dimensions
for dim in ['delta_time']:
h5[gtx]['heights'][k].dims.create_scale(
h5[gtx]['heights'][dim], dim)
h5[gtx]['heights'][k].dims[0].attach_scale(
h5[gtx]['heights'][dim])
#-- add HDF5 variable attributes
for att_name,att_val in attrs.items():
h5[gtx]['heights'][k].attrs[att_name] = att_val
#-- create subsetting group
fileID[gtx].create_group('subsetting')
h5[gtx]['subsetting'] = {}
for att_name in ['Description','data_rate']:
att_val = IS2_atl03_attrs[gtx]['subsetting'][att_name]
fileID[gtx]['subsetting'].attrs[att_name] = att_val
#-- add to subsetting variables
for k,v in IS2_atl03_dem[gtx]['subsetting'].items():
#-- attributes
attrs = IS2_atl03_attrs[gtx]['subsetting'][k]
#-- Defining the HDF5 dataset variables
val = '{0}/{1}/{2}'.format(gtx,'subsetting',k)
h5[gtx]['subsetting'][k] = fileID.create_dataset(val, np.shape(v),
data=v, dtype=v.dtype, compression='gzip')
#-- attach dimensions
for dim in ['delta_time']:
h5[gtx]['subsetting'][k].dims.create_scale(
h5[gtx]['heights'][dim], dim)
h5[gtx]['subsetting'][k].dims[0].attach_scale(
h5[gtx]['heights'][dim])
#-- add HDF5 variable attributes
for att_name,att_val in attrs.items():
h5[gtx]['subsetting'][k].attrs[att_name] = att_val
#-- HDF5 file title
fileID.attrs['featureType'] = 'trajectory'
fileID.attrs['title'] = 'ATLAS/ICESat-2 L2A Global Geolocated Photon Data'
fileID.attrs['summary'] = ("The purpose of ATL03 is to provide along-track "
"photon data for all 6 ATLAS beams and associated statistics.")
fileID.attrs['description'] = ("Photon heights determined by ATBD "
"Algorithm using POD and PPD. All photon events per transmit pulse per "
"beam. Includes POD and PPD vectors. Classification of each photon by "
"several ATBD Algorithms.")
date_created = datetime.datetime.today()
fileID.attrs['date_created'] = date_created.isoformat()
project = 'ICESat-2 > Ice, Cloud, and land Elevation Satellite-2'
fileID.attrs['project'] = project
platform = 'ICESat-2 > Ice, Cloud, and land Elevation Satellite-2'
fileID.attrs['project'] = platform
#-- add attribute for elevation instrument and designated processing level
instrument = 'ATLAS > Advanced Topographic Laser Altimeter System'
fileID.attrs['instrument'] = instrument
fileID.attrs['source'] = 'Spacecraft'
fileID.attrs['references'] = 'http://nsidc.org/data/icesat2/data.html'
fileID.attrs['processing_level'] = '4'
#-- add attributes for input ATL03 and ATL09 files
fileID.attrs['input_files'] = ','.join([os.path.basename(i) for i in INPUT])
#-- find geospatial and temporal ranges
lnmn,lnmx,ltmn,ltmx,tmn,tmx = (np.inf,-np.inf,np.inf,-np.inf,np.inf,-np.inf)
for gtx in beams:
lon = IS2_atl03_dem[gtx]['heights']['longitude']
lat = IS2_atl03_dem[gtx]['heights']['latitude']
delta_time = IS2_atl03_dem[gtx]['heights']['delta_time']
#-- setting the geospatial and temporal ranges
lnmn = lon.min() if (lon.min() < lnmn) else lnmn
lnmx = lon.max() if (lon.max() > lnmx) else lnmx
ltmn = lat.min() if (lat.min() < ltmn) else ltmn
ltmx = lat.max() if (lat.max() > ltmx) else ltmx
tmn = delta_time.min() if (delta_time.min() < tmn) else tmn
tmx = delta_time.max() if (delta_time.max() > tmx) else tmx
#-- add geospatial and temporal attributes
fileID.attrs['geospatial_lat_min'] = ltmn
fileID.attrs['geospatial_lat_max'] = ltmx
fileID.attrs['geospatial_lon_min'] = lnmn
fileID.attrs['geospatial_lon_max'] = lnmx
fileID.attrs['geospatial_lat_units'] = "degrees_north"
fileID.attrs['geospatial_lon_units'] = "degrees_east"
fileID.attrs['geospatial_ellipsoid'] = "WGS84"
fileID.attrs['date_type'] = 'UTC'
fileID.attrs['time_type'] = 'CCSDS UTC-A'
#-- convert start and end time from ATLAS SDP seconds into Julian days
atlas_sdp_gps_epoch=IS2_atl03_dem['ancillary_data']['atlas_sdp_gps_epoch']
gps_seconds = atlas_sdp_gps_epoch + np.array([tmn,tmx])
time_leaps = count_leap_seconds(gps_seconds)
time_julian = 2444244.5 + (gps_seconds - time_leaps)/86400.0
#-- convert to calendar date with convert_julian.py
YY,MM,DD,HH,MN,SS = convert_julian(time_julian,FORMAT='tuple')
#-- add attributes with measurement date start, end and duration
tcs = datetime.datetime(np.int(YY[0]), np.int(MM[0]), np.int(DD[0]),
np.int(HH[0]), np.int(MN[0]), np.int(SS[0]), np.int(1e6*(SS[0] % 1)))
fileID.attrs['time_coverage_start'] = tcs.isoformat()
tce = datetime.datetime(np.int(YY[1]), np.int(MM[1]), np.int(DD[1]),
np.int(HH[1]), np.int(MN[1]), np.int(SS[1]), np.int(1e6*(SS[1] % 1)))
fileID.attrs['time_coverage_end'] = tce.isoformat()
fileID.attrs['time_coverage_duration'] = '{0:0.0f}'.format(tmx-tmn)
#-- Closing the HDF5 file
fileID.close()
#-- run main program
if __name__ == '__main__':
main()