-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreadme.txt
25 lines (16 loc) · 905 Bytes
/
readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
This is the implementation used in our paper of graph embedding hyperparameter analysis.
Dingqi Yang, Bingqing Qu, Rana Hussein, Paolo Rosso, Philippe Cudre-Mauroux, and Jie Liu, Revisiting Embedding Based Graph Analyses: Hyperparameters Matter! IEEE Transactions on Knowledge and Data Engineering (TKDE), 2023.
It contains two types of algorithms:
- Factorization-based graph embedding techniques
- Random-walk graph-sampling based techniques
How to use (Tested on MATLAB 2017a and 2017b):
- embMF:
1. run experiment_MF.m
- embRWGS:
1. Compile embRWGS.c using mex: mex embRWGS.c
2. Run experiment_RWGS.m
- evaluation on the node classification task (using Deepwalk testing code):
1. run evaluation_node_classification.m
or from command line:
1. python ./scoring.py ./blogcatalog.mat ./embeddings_MF.mat ./classification_res_MF.mat
Please cite our paper if you publish material using this code.