diff --git a/src/esmac_diags/preprocessing/prep_ACEENA_sfc.py b/src/esmac_diags/preprocessing/prep_ACEENA_sfc.py index 80a337d..7015eb3 100644 --- a/src/esmac_diags/preprocessing/prep_ACEENA_sfc.py +++ b/src/esmac_diags/preprocessing/prep_ACEENA_sfc.py @@ -155,7 +155,7 @@ def prep_ccn(ccnpath, predatapath, dt=3600): time = ccndata['time'].load() coefs = ccndata['N_CCN_fit_coefs'].load() ccn = ccndata['N_CCN'].load() - qc_ccn = ccndata['qc_N_CCN'].load() + qc_ccns = ccndata['qc_N_CCN'].load() ss = ccndata['supersaturation_calculated'].load() ccndata.close() @@ -207,22 +207,22 @@ def prep_ccn(ccnpath, predatapath, dt=3600): # data resolution is hourly, so interpolate for finer resolution # note that ENA code includes polynomial fits (should make consistent in future) if dt >= 3600: - ccn1_measure = median_time_1d(time1, ccn1, time_new, arraytype='xarray') - ss1_i = median_time_1d(time1, ss1, time_new, arraytype='xarray') - ccn2_measure = median_time_1d(time2, ccn2, time_new, arraytype='xarray') - ss2_i = median_time_1d(time2, ss2, time_new, arraytype='xarray') - ccn5_measure = median_time_1d(time5, ccn5, time_new, arraytype='xarray') - ss5_i = median_time_1d(time5, ss5, time_new, arraytype='xarray') + ccn1_measure = median_time_1d(time, ccn1, time_new, arraytype='xarray') + ss1_i = median_time_1d(time, ss1, time_new, arraytype='xarray') + ccn2_measure = median_time_1d(time, ccn2, time_new, arraytype='xarray') + ss2_i = median_time_1d(time, ss2, time_new, arraytype='xarray') + ccn5_measure = median_time_1d(time, ccn5, time_new, arraytype='xarray') + ss5_i = median_time_1d(time, ss5, time_new, arraytype='xarray') ccn1_fit_i = median_time_1d(time, ccn1_fit, time_new, arraytype='xarray') ccn2_fit_i = median_time_1d(time, ccn2_fit, time_new, arraytype='xarray') ccn5_fit_i = median_time_1d(time, ccn5_fit, time_new, arraytype='xarray') if dt < 3600: - ccn1_measure = interp_time_1d(time1, ccn1, time_new, arraytype='xarray') - ss1_i = interp_time_1d(time1, ss1, time_new, arraytype='xarray') - ccn2_measure = interp_time_1d(time2, ccn2, time_new, arraytype='xarray') - ss2_i = interp_time_1d(time2, ss2, time_new, arraytype='xarray') - ccn5_measure = interp_time_1d(time5, ccn5, time_new, arraytype='xarray') - ss5_i = interp_time_1d(time5, ss5, time_new, arraytype='xarray') + ccn1_measure = interp_time_1d(time, ccn1, time_new, arraytype='xarray') + ss1_i = interp_time_1d(time, ss1, time_new, arraytype='xarray') + ccn2_measure = interp_time_1d(time, ccn2, time_new, arraytype='xarray') + ss2_i = interp_time_1d(time, ss2, time_new, arraytype='xarray') + ccn5_measure = interp_time_1d(time, ccn5, time_new, arraytype='xarray') + ss5_i = interp_time_1d(time, ss5, time_new, arraytype='xarray') ccn1_fit_i = interp_time_1d(time, ccn1_fit, time_new, arraytype='xarray') ccn2_fit_i = interp_time_1d(time, ccn2_fit, time_new, arraytype='xarray') ccn5_fit_i = interp_time_1d(time, ccn5_fit, time_new, arraytype='xarray')