forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatchLinearAlgebra.cpp
209 lines (167 loc) · 7.03 KB
/
BatchLinearAlgebra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include "ATen/ATen.h"
#include "ATen/CPUApplyUtils.h"
#include "ATen/Dispatch.h"
#include "ATen/ExpandUtils.h"
#include "ATen/NativeFunctions.h"
#include "ATen/native/LinearAlgebraUtils.h"
#include "TH.h" // for USE_LAPACK
#include <vector>
// First the required LAPACK implementations are registered here.
// A comment above the registered LAPACK routine suggest which batched
// linear algebra function uses that routine
#ifdef USE_LAPACK
// gesv
extern "C" void dgesv_(int* n, int* nrhs, double* a, int* lda, int *ipiv, double* b, int* ldb, int* info);
extern "C" void sgesv_(int* n, int* nrhs, float* a, int* lda, int* ipiv, float* b, int* ldb, int* info);
// inverse
extern "C" void dgetrf_(int *m, int *n, double *a, int *lda, int *ipiv, int *info);
extern "C" void sgetrf_(int *m, int *n, float *a, int *lda, int *ipiv, int *info);
extern "C" void dgetri_(int *n, double *a, int *lda, int *ipiv, double *work, int *lwork, int *info);
extern "C" void sgetri_(int *n, float *a, int *lda, int *ipiv, float *work, int *lwork, int *info);
#endif
namespace at {
namespace native {
// Define the per-batch functions to be used in the main implementation of the batched
// linear algebra operations
template<class scalar_t>
void lapackGesv(int n, int nrhs, scalar_t* a, int lda, int* ipiv, scalar_t* b, int ldb, int* info) {
AT_ERROR("gesv only takes float or double Tensors");
}
template<class scalar_t>
void lapackGetrf(int m, int n, scalar_t* a, int lda, int *ipiv, int *info) {
AT_ERROR("getrf only takes float or double Tensors");
}
template<class scalar_t>
void lapackGetri(int n, scalar_t *a, int lda, int *ipiv, scalar_t *work, int lwork, int *info) {
AT_ERROR("getri only takes float or double Tensors");
}
#ifdef USE_LAPACK
template<> void lapackGesv<double>(int n, int nrhs, double* a, int lda, int* ipiv, double* b, int ldb, int* info) {
dgesv_(&n, &nrhs, a, &lda, ipiv, b, &ldb, info);
}
template<> void lapackGesv<float>(int n, int nrhs, float* a, int lda, int* ipiv, float* b, int ldb, int* info) {
sgesv_(&n, &nrhs, a, &lda, ipiv, b, &ldb, info);
}
template<> void lapackGetri<double>(int n, double *a, int lda, int *ipiv, double *work, int lwork, int *info) {
dgetri_(&n, a, &lda, ipiv, work, &lwork, info);
}
template<> void lapackGetri<float>(int n, float *a, int lda, int *ipiv, float *work, int lwork, int *info) {
sgetri_(&n, a, &lda, ipiv, work, &lwork, info);
}
template<> void lapackGetrf<double>(int m, int n, double *a, int lda, int *ipiv, int *info) {
dgetrf_(&m, &n, a, &lda, ipiv, info);
}
template<> void lapackGetrf<float>(int m, int n, float *a, int lda, int *ipiv, int *info) {
sgetrf_(&m, &n, a, &lda, ipiv, info);
}
#endif
// Below of the definitions of the functions operating on a batch that are going to be dispatched
// in the main helper functions for the linear algebra operations
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ gesv ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template<typename scalar_t>
static void apply_gesv(Tensor& b, Tensor& A, std::vector<int64_t>& infos) {
#ifndef USE_LAPACK
AT_ERROR("gesv: LAPACK library not found in compilation");
#endif
auto A_data = A.data<scalar_t>();
auto b_data = b.data<scalar_t>();
auto A_mat_stride = matrixStride(A);
auto b_mat_stride = matrixStride(b);
auto batch_size = batchCount(A);
auto n = A.size(-2);
auto nrhs = b.size(-1);
auto ipiv = at::empty({n}, b.type().toScalarType(kInt));
for (int64_t i = 0; i < batch_size; i++) {
int info;
scalar_t* A_working_ptr = &A_data[i * A_mat_stride];
scalar_t* b_working_ptr = &b_data[i * b_mat_stride];
lapackGesv<scalar_t>(n, nrhs, A_working_ptr, n, ipiv.data<int>(), b_working_ptr, n, &info);
infos[i] = info;
if (info != 0) {
return;
}
}
}
// These utilities are specified in LinearAlgebraUtils.h
GENERATE_LINALG_HELPER_2_ARGS(gesv, self, A, cpu)
// Supports arbitrary batch dimensions for self and A
std::tuple<Tensor,Tensor> gesv(const Tensor& self, const Tensor& A) {
if (self.dim() <= 2 && A.dim() <= 2) {
// TODO: #7102: It's not necessary to have gesv (single) bindings for both
// TH and ATen. We should remove the TH gesv bindings, especially
// since the lapackGesv function is already in ATen.
return at::_th_gesv_single(self, A);
}
gesvCheckInputs(self, A);
// broadcast the batch dimensions of self and A.
IntList self_batch_sizes(self.sizes().data(), self.ndimension() - 2);
IntList A_batch_sizes(A.sizes().data(), A.ndimension() - 2);
std::vector<int64_t> expand_batch_portion = infer_size(self_batch_sizes, A_batch_sizes);
std::vector<int64_t> self_expand_size({expand_batch_portion});
self_expand_size.insert(self_expand_size.end(), { self.size(-2), self.size(-1) });
std::vector<int64_t> A_expand_size({expand_batch_portion});
A_expand_size.insert(A_expand_size.end(), { A.size(-2), A.size(-1) });
Tensor self_broadcasted = self.expand(self_expand_size);
Tensor A_broadcasted = A.expand(A_expand_size);
return at::_gesv_helper(self_broadcasted, A_broadcasted);
}
std::tuple<Tensor&,Tensor&> gesv_out(Tensor& solution, Tensor& lu, const Tensor& self, const Tensor& A) {
AT_CHECK(self.dim() == 2 && A.dim() == 2,
"torch.gesv() with the `out` keyword does not support batching. "
"b.dim() (", self.dim(), ") and A.dim() (", A.dim(), ") must both be 2.");
return at::_th_gesv_single_out(solution, lu, self, A);
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ inverse ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <typename scalar_t>
static void apply_inverse(Tensor& self, std::vector<int64_t>& infos) {
#ifndef USE_LAPACK
AT_ERROR("inverse: LAPACK library not found in compilation");
#endif
auto self_data = self.data<scalar_t>();
auto self_matrix_stride = matrixStride(self);
auto batch_size = batchCount(self);
auto n = self.size(-2);
auto ipiv = at::empty({n}, self.type().toScalarType(kInt));
int lwork;
scalar_t wkopt;
Tensor work;
for (int64_t i = 0; i < batch_size; i++) {
int info;
scalar_t* self_working_ptr = &self_data[i * self_matrix_stride];
lapackGetrf<scalar_t>(n, n, self_working_ptr, n, ipiv.data<int>(), &info);
infos[i] = info;
if (info != 0) {
return;
}
// Run twice, first to get the optimum work size
lwork = -1;
lapackGetri<scalar_t>(n, self_working_ptr, n, ipiv.data<int>(), &wkopt, lwork, &info);
lwork = static_cast<int>(wkopt);
work = at::empty({lwork}, self.type());
// now to compute the actual inverse
lapackGetri<scalar_t>(n, self_working_ptr, n, ipiv.data<int>(), work.data<scalar_t>(), lwork, &info);
infos[i] = info;
if (info != 0) {
return;
}
}
}
GENERATE_LINALG_HELPER_1_ARGS(inverse, self, cpu)
Tensor inverse(const Tensor &self) {
if (self.size(-1) == 0) {
return at::empty_like(self);
}
if (self.dim() == 2) {
return at::_th_getri_single(self);
}
inverseCheckInputs(self);
return at::_inverse_helper(self);
}
Tensor& inverse_out(Tensor &result, const Tensor &self) {
if (self.size(-1) == 0) {
return result.resize_as_(self);
}
result.copy_(native::inverse(self));
return result;
}
}} // namespace at::native