forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmbeddingBag.cpp
356 lines (311 loc) · 13.7 KB
/
EmbeddingBag.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#include "ATen/ATen.h"
#include "ATen/TensorUtils.h"
#include "ATen/NativeFunctions.h"
#include "TH/THBlasUtils.h"
#include <cstring>
#include <iostream>
#include <memory>
#include <sstream>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
namespace {
const int MODE_SUM = 0;
const int MODE_MEAN = 1;
const int MODE_MAX = 2;
}
namespace at {
namespace native {
static void make_offset2bag(const Tensor &offsets, const Tensor &indices,
Tensor &offset2bag) {
offset2bag.index_add_(
0, offsets, at::ones_like(offsets)); // offset2bag = [1 0 1 0 1]
offset2bag[0] -= 1; // offset2bag = [0 0 1 0 1]
offset2bag = offset2bag.cumsum(0); // offset2bag = [0 0 1 1 2]
}
// This function combines index_select (using select_indices as the index) and
// index_add (using add_indices as the index), without creating an intermediary
// tensor to hold the selected embeddings
template<typename T>
static void index_select_add(const Tensor &select_indices,
const Tensor &add_indices,
const Tensor &src,
Tensor &output) {
auto add_indices_data = add_indices.data<int64_t>();
auto select_indices_data = select_indices.data<int64_t>();
auto src_data = src.data<T>();
auto output_data = output.data<T>();
auto numel = add_indices.numel();
int64_t ddim = src.size(1);
auto src_stride0 = src.stride(0);
auto src_stride1 = src.stride(1);
auto output_stride0 = output.stride(0);
auto output_stride1 = output.stride(1);
for (int64_t i = 0; i < numel; i++) {
THBlas_axpy<T>(ddim, 1,
src_data + src_stride0 * select_indices_data[i], src_stride1,
output_data + output_stride0 * add_indices_data[i], output_stride1);
}
}
static void make_bag_size(const Tensor &offsets, const Tensor &indices,
const int64_t mode, Tensor &bag_size) {
if (mode == MODE_MEAN || mode == MODE_MAX) {
// Compute this for MODE_MEAN and MODE_MAX (latter needed for backwards)
if (offsets.size(0) != 1) {
bag_size.slice(0, 0, bag_size.size(0) - 1, 1) =
offsets.slice(0, 1, offsets.size(0), 1) -
offsets.slice(0, 0, offsets.size(0) - 1, 1);
}
bag_size[-1] = indices.size(0) - offsets[-1];
}
}
static Tensor apply_bag_size(const Tensor &offsets, const Tensor &indices,
const int64_t mode, Tensor &output,
const Tensor &bag_size) {
if (mode == MODE_MEAN) {
if (offsets.size(0) == 1) {
auto bag_size_ = indices.size(0);
output /= bag_size_;
} else {
// Avoid dividing by 0 for empty bags.
// Instead we want empty bags to return all 0s
auto bag_size_ = at::max(bag_size, at::ones_like(bag_size))
.toType(output.type())
.unsqueeze(1)
.expand_as(output);
output /= bag_size_;
}
}
return output;
}
static Tensor apply_bag_size_backward(const Tensor &offsets,
const Tensor &indices, const int64_t mode,
Tensor &output, const Tensor &offset2bag,
const Tensor &bag_size) {
if (mode == MODE_MEAN) {
if (offsets.size(0) == 1) {
auto bag_size_ = indices.size(0);
output /= bag_size_;
} else {
auto inv_bag_size_ = (1 / bag_size.toType(output.type()))
.unsqueeze(1)
.index_select(0, offset2bag);
output *= inv_bag_size_;
}
}
return output;
}
template <typename scalar_t>
std::tuple<Tensor, Tensor, Tensor, Tensor> embedding_bag_cpu_max(
const Tensor& weight, const Tensor &indices, const Tensor& offset2bag, const Tensor& output, const Tensor& bag_size, const Tensor& offsets) {
auto max_indices = at::zeros({offsets.size(0), weight.size(1)}, indices.type());
int64_t numel = indices.numel();
int64_t dims = weight.size(1);
auto indices_data = indices.data<int64_t>();
auto offset2bag_data = offset2bag.data<int64_t>();
auto max_indices_data = max_indices.data<int64_t>();
auto max_indices_stride = max_indices.stride(0);
auto weight_data = weight.data<scalar_t>();
auto output_data = output.data<scalar_t>();
auto weight_stride0 = weight.stride(0);
auto weight_stride1 = weight.stride(1);
auto output_stride = output.stride(0);
for (int i = 0; i < numel; i++) {
auto bag = offset2bag_data[i];
auto word_idx = indices_data[i];
for (int dim = 0; dim < dims; dim++) {
auto& current_item = output_data[output_stride * bag + dim];
auto weight_item = weight_data[weight_stride0 * word_idx + dim * weight_stride1];
bool is_first_for_bag = (i == 0) || offset2bag_data[i - 1] != bag;
if (is_first_for_bag || weight_item > current_item) {
current_item = weight_item;
max_indices_data[max_indices_stride * bag + dim] = word_idx;
}
}
}
return std::tuple<Tensor, Tensor, Tensor, Tensor>(output, offset2bag, bag_size, max_indices);
}
// embedding_bag wrapper to enforce contiguity in tensors other than `weight`.
// This is created to save extra `.contiguous()` call in backward.
// See NOTE [ embedding_bag Native Functions ] in native_functions.yaml for details
std::tuple<Tensor, Tensor, Tensor, Tensor>
embedding_bag(const Tensor &weight, const Tensor &indices,
const Tensor &offsets, const bool scale_grad_by_freq,
const int64_t mode, bool sparse) {
return at::_embedding_bag(weight, indices.contiguous(), offsets.contiguous(),
scale_grad_by_freq, mode, sparse);
};
// Assumes all input tensors except for `weight` are contiguous.
// See NOTE [ embedding_bag Native Functions ] in native_functions.yaml for details
std::tuple<Tensor, Tensor, Tensor, Tensor>
_embedding_bag_cpu(const Tensor &weight, const Tensor &indices,
const Tensor &offsets, const bool scale_grad_by_freq,
const int64_t mode, bool sparse) {
auto indices_arg = TensorArg(indices, "indices", 1);
checkScalarType("embedding_bag", indices_arg, kLong);
auto offsets_arg = TensorArg(offsets, "offsets", 1);
checkScalarType("embedding_bag", indices_arg, kLong);
auto weight_arg = TensorArg(weight, "weight", 1);
checkScalarTypes("embedding_bag", weight_arg, {kFloat, kDouble});
auto bag_size = at::zeros(offsets.sizes(), indices.type());
make_bag_size(offsets, indices, mode, bag_size);
// If the last entries are empty, that the last offsets are irrelevant as they
// won't change anything in the assignment of ID -> bag, but index_add would
// throw out of bounds error. So to keep it simple we just add one more
// entry to the end then get rid of it after make_offset2bag.
auto offset2bag = at::zeros(
{indices.sizes()[0] + 1}, indices.options()); // offset2bag = [0 0 0 0 0]
make_offset2bag(offsets, indices, offset2bag);
offset2bag.resize_({indices.sizes()[0]});
auto output = at::zeros({offsets.size(0), weight.size(1)}, weight.options());
if (mode == MODE_MEAN || mode == MODE_SUM) {
if (weight.type().scalarType() == kFloat) {
index_select_add<float>(indices, offset2bag, weight, output);
} else if (weight.type().scalarType() == kDouble) {
index_select_add<double>(indices, offset2bag, weight, output);
}
auto ret = apply_bag_size(offsets, indices, mode, output, bag_size);
return std::tuple<Tensor, Tensor, Tensor, Tensor>(ret, offset2bag, bag_size, bag_size);
} else { // MODE_MAX
return AT_DISPATCH_FLOATING_TYPES_AND_HALF(
weight.type(), "embedding_bag_cpu_max", [&]() {
return embedding_bag_cpu_max<scalar_t>(weight, indices, offset2bag, output, bag_size, offsets);
}
);
}
}
// Assumes all input tensors are contiguous.
// See NOTE [ embedding_bag Native Functions ] in native_functions.yaml for details
Tensor _embedding_bag_backward(const Tensor &grad, const Tensor &indices,
const Tensor &offsets,
const Tensor &offset2bag,
const Tensor &bag_size_,
const Tensor &max_indices_,
int64_t num_weights,
bool scale_grad_by_freq, int64_t mode,
bool sparse) {
auto indices_arg = TensorArg(indices, "indices", 1);
checkScalarType("embedding_bag", indices_arg, kLong);
checkContiguous("embedding_bag", indices_arg);
auto offsets_arg = TensorArg(offsets, "offsets", 1);
checkScalarType("embedding_bag", offsets_arg, kLong);
checkContiguous("embedding_bag", offsets_arg);
auto offset2bag_arg = TensorArg(offset2bag, "offset2bag", 1);
checkScalarType("embedding_bag", offset2bag_arg, kLong);
checkContiguous("embedding_bag", offset2bag_arg);
if (sparse) {
return at::_embedding_bag_sparse_backward(
grad, indices, offsets, offset2bag, bag_size_, num_weights,
scale_grad_by_freq, mode);
} else {
return at::_embedding_bag_dense_backward(
grad, indices, offsets, offset2bag, bag_size_, max_indices_, num_weights,
scale_grad_by_freq, mode);
}
}
Tensor _embedding_bag_dense_backward_cpu(const Tensor &grad_, const Tensor &indices_,
const Tensor &offsets_,
const Tensor &offset2bag__,
const Tensor &bag_size_,
const Tensor& max_indices_, int64_t num_weights,
bool scale_grad_by_freq, int64_t mode) {
// indices_, offsets_ and offset2bag__ are assumed having correct dtypes and
// contiguous here due to the checks in _embedding_bag_backward above.
// Also see NOTE [ embedding_bag Native Functions ] in native_functions.yaml
// for more details.
auto grad = grad_.contiguous();
auto grad_arg = TensorArg(grad, "grad_", 1);
checkScalarTypes("embedding_bag", grad_arg, {kFloat, kDouble});
Tensor &offset2bag_ = const_cast<Tensor &>(offset2bag__);
auto ind_sort_ = indices_.sort();
auto indices = std::get<0>(ind_sort_);
auto ind_sort = std::get<1>(ind_sort_);
auto offset2bag = offset2bag_.index_select(0, ind_sort);
auto indices_data = indices.data<int64_t>();
auto offsets_data = offsets_.data<int64_t>();
auto offset2bag_data = offset2bag.data<int64_t>();
int64_t numel = indices.numel();
std::vector<int64_t> counts(num_weights);
for (int i = 0; i < numel; i++) {
counts[indices_data[i]] = 0;
}
for (int i = 0; i < numel; i++) {
counts[indices_data[i]]++;
}
auto index_grad_weight =
at::zeros({num_weights, grad.size(1)}, grad.type()).contiguous();
std::vector<int64_t> counts_uniq;
counts_uniq.reserve(num_weights);
int64_t o = 0;
for (int64_t i = 0; i < numel; i += counts[indices_data[i]]) {
counts_uniq.push_back(counts[indices_data[i]]);
if (o > 0) {
counts_uniq[o] += counts_uniq[o - 1];
}
o++;
}
if (mode == MODE_MEAN || mode == MODE_SUM) {
#pragma omp parallel for if (numel > 1000)
for (int64_t i = 0; i < (int64_t)counts_uniq.size(); i++) {
int64_t start = i == 0 ? 0 : counts_uniq[i - 1];
int64_t index = indices_data[start];
for (int64_t j = start; j < counts_uniq[i]; j++) {
int64_t source = offset2bag_data[j];
double scale = 1.0;
if (scale_grad_by_freq) {
scale /= counts[indices_data[i]];
}
if (mode == 1) { // MODE_MEAN
if (offsets_.size(0) == 1) {
auto bag_size = indices.size(0);
scale /= bag_size;
} else {
if (source == offsets_.size(0) - 1) {
scale /= indices.size(0) - offsets_data[offsets_.size(0) - 1];
} else {
scale /= offsets_data[source + 1] - offsets_data[source];
}
}
}
int64_t ddim = grad.size(1);
if (grad.type().scalarType() == kFloat) {
auto igwd = index_grad_weight.data<float>();
auto gd = grad.data<float>();
THBlas_axpy<float>(ddim, (float)scale, gd + ddim * source, 1,
igwd + ddim * index, 1);
} else if (grad.type().scalarType() == kDouble) {
auto igwd = index_grad_weight.data<double>();
auto gd = grad.data<double>();
THBlas_axpy<double>(ddim, (double)scale, gd + ddim * source, 1,
igwd + ddim * index, 1);
}
}
}
} else if (mode == MODE_MAX) {
auto nonempty_max_indices = max_indices_.index_select(0, bag_size_.nonzero().view(-1));
auto nonempty_grad = grad_.index_select(0, bag_size_.nonzero().view(-1));
for (int64_t dim = 0; dim < grad.size(1); dim++) {
index_grad_weight.select(1, dim).index_add_(
0, nonempty_max_indices.select(1, dim), nonempty_grad.select(1, dim));
}
}
return index_grad_weight;
}
Tensor _embedding_bag_sparse_backward(
const Tensor &grad_, const Tensor &indices, const Tensor &offsets,
const Tensor &offset2bag, const Tensor &bag_size_, int64_t num_weights,
bool scale_grad_by_freq, int64_t mode) {
// indices, offsets and offset2bag are assumed having correct dtypes and
// contiguous here due to the checks in _embedding_bag_backward above.
// Also see NOTE [ embedding_bag Native Functions ] in native_functions.yaml
// for more details.
Tensor grad = grad_;
Tensor index_grad = grad_.index_select(0, offset2bag);
index_grad = apply_bag_size_backward(offsets, indices, mode, index_grad,
offset2bag, bag_size_);
return native::embedding_backward(index_grad, indices, num_weights, -1,
scale_grad_by_freq, true);
}
}
} // namespace at::native