forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLegacyDefinitions.cpp
830 lines (624 loc) · 23.8 KB
/
LegacyDefinitions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
namespace at { namespace native {
// Methods
int64_t ndimension(const Tensor& self) {
return self._th_ndimension();
}
void* data_ptr(const Tensor & self) {
return self.unsafeGetTensorImpl()->slow_data();
}
Tensor & set_(Tensor& self, Storage source) {
return self._th_set_(source);
}
Tensor & set_(Tensor& self, Storage source, int64_t storage_offset, IntList size, IntList stride) {
return self._th_set_(source, storage_offset, size, stride);
}
Tensor & set_(Tensor& self, const Tensor & source) {
return self._th_set_(source);
}
Tensor & set_(Tensor& self) {
return self._th_set_();
}
bool is_contiguous(const Tensor& self) {
return self._th_is_contiguous();
}
bool is_set_to(const Tensor& self, const Tensor & tensor) {
return self._th_is_set_to(tensor);
}
Tensor & masked_fill_(Tensor& self, const Tensor & mask, Scalar value) {
return self._th_masked_fill_(mask, value);
}
Tensor & masked_fill_(Tensor& self, const Tensor & mask, const Tensor & value) {
return self._th_masked_fill_(mask, value);
}
Tensor & masked_scatter_(Tensor& self, const Tensor & mask, const Tensor & source) {
return self._th_masked_scatter_(mask, source);
}
Tensor view(const Tensor& self, IntList size) {
return self._th_view(size);
}
Tensor & put_(Tensor& self, const Tensor & index, const Tensor & source, bool accumulate) {
return self._th_put_(index, source, accumulate);
}
Tensor & index_add_(Tensor& self, int64_t dim, const Tensor & index, const Tensor & source) {
return self._th_index_add_(dim, index, source);
}
Tensor & index_fill_(Tensor& self, int64_t dim, const Tensor & index, Scalar value) {
return self._th_index_fill_(dim, index, value);
}
Tensor & index_fill_(Tensor& self, int64_t dim, const Tensor & index, const Tensor & value) {
return self._th_index_fill_(dim, index, value);
}
Tensor & scatter_(Tensor& self, int64_t dim, const Tensor & index, const Tensor & src) {
return self._th_scatter_(dim, index, src);
}
Tensor & scatter_(Tensor& self, int64_t dim, const Tensor & index, Scalar value) {
return self._th_scatter_(dim, index, value);
}
Tensor & scatter_add_(Tensor& self, int64_t dim, const Tensor & index, const Tensor & src) {
return self._th_scatter_add_(dim, index, src);
}
Tensor & lt_(Tensor& self, Scalar other) {
return self._th_lt_(other);
}
Tensor & lt_(Tensor& self, const Tensor & other) {
return self._th_lt_(other);
}
Tensor & gt_(Tensor& self, Scalar other) {
return self._th_gt_(other);
}
Tensor & gt_(Tensor& self, const Tensor & other) {
return self._th_gt_(other);
}
Tensor & le_(Tensor& self, Scalar other) {
return self._th_le_(other);
}
Tensor & le_(Tensor& self, const Tensor & other) {
return self._th_le_(other);
}
Tensor & ge_(Tensor& self, Scalar other) {
return self._th_ge_(other);
}
Tensor & ge_(Tensor& self, const Tensor & other) {
return self._th_ge_(other);
}
Tensor & eq_(Tensor& self, Scalar other) {
return self._th_eq_(other);
}
Tensor & eq_(Tensor& self, const Tensor & other) {
return self._th_ge_(other);
}
Tensor & ne_(Tensor& self, Scalar other) {
return self._th_ne_(other);
}
Tensor & ne_(Tensor& self, const Tensor & other) {
return self._th_ne_(other);
}
Tensor & lgamma_(Tensor& self) {
return self._th_lgamma_();
}
Tensor & atan2_(Tensor& self, const Tensor & other) {
return self._th_atan2_(other);
}
Tensor & tril_(Tensor& self, int64_t diagonal) {
return self._th_tril_(diagonal);
}
Tensor & triu_(Tensor& self, int64_t diagonal) {
return self._th_triu_(diagonal);
}
Tensor & digamma_(Tensor& self) {
return self._th_digamma_();
}
Tensor & polygamma_(Tensor& self, int64_t n) {
return self._th_polygamma_(n);
}
Tensor & erfinv_(Tensor& self) {
return self._th_erfinv_();
}
Tensor & frac_(Tensor& self) {
return self._th_frac_();
}
Tensor & renorm_(Tensor& self, Scalar p, int64_t dim, Scalar maxnorm) {
return self._th_renorm_(p, dim, maxnorm);
}
Tensor & reciprocal_(Tensor& self) {
return self._th_reciprocal_();
}
Tensor & neg_(Tensor& self) {
return self._th_neg_();
}
Tensor & pow_(Tensor& self, Scalar exponent) {
return self._th_pow_(exponent);
}
Tensor & pow_(Tensor& self, const Tensor & exponent) {
return self._th_pow_(exponent);
}
Tensor & lerp_(Tensor& self, const Tensor & end, Scalar weight) {
return self._th_lerp_(end, weight);
}
Tensor & sign_(Tensor& self) {
return self._th_sign_();
}
Tensor & fmod_(Tensor& self, Scalar other) {
return self._th_fmod_(other);
}
Tensor & fmod_(Tensor& self, const Tensor & other) {
return self._th_fmod_(other);
}
Tensor & remainder_(Tensor& self, Scalar other) {
return self._th_remainder_(other);
}
Tensor & remainder_(Tensor& self, const Tensor & other) {
return self._th_remainder_(other);
}
Tensor & addbmm_(Tensor& self, const Tensor & batch1, const Tensor & batch2, Scalar beta, Scalar alpha) {
return self._th_addbmm_(batch1, batch2, beta, alpha);
}
Tensor & addbmm_out(Tensor & result, const Tensor & self, const Tensor & batch1, const Tensor & batch2, Scalar beta, Scalar alpha) {
return at::_th_addbmm_out(result, self, batch1, batch2, beta, alpha);
}
Tensor addbmm(const Tensor & self, const Tensor & batch1, const Tensor & batch2, Scalar beta, Scalar alpha) {
return at::_th_addbmm(self, batch1, batch2, beta, alpha);
}
Tensor & addcmul_(Tensor& self, const Tensor & tensor1, const Tensor & tensor2, Scalar value) {
return self._th_addcmul_(tensor1, tensor2, value);
}
Tensor & addcdiv_(Tensor& self, const Tensor & tensor1, const Tensor & tensor2, Scalar value) {
return self._th_addcdiv_(tensor1, tensor2, value);
}
Tensor & random_(Tensor& self, int64_t from, int64_t to, Generator * generator) {
return self._th_random_(from, to, generator);
}
Tensor & random_(Tensor& self, int64_t to, Generator * generator) {
return self._th_random_(to, generator);
}
Tensor & random_(Tensor& self, Generator * generator) {
return self._th_random_(generator);
}
Tensor & uniform_(Tensor& self, double from, double to, Generator * generator) {
return self._th_uniform_(from, to, generator);
}
Tensor & normal_(Tensor& self, double mean, double std, Generator * generator) {
return self._th_normal_(mean, std, generator);
}
Tensor & cauchy_(Tensor& self, double median, double sigma, Generator * generator) {
return self._th_cauchy_(median, sigma, generator);
}
Tensor & log_normal_(Tensor& self, double mean, double std, Generator * generator) {
return self._th_log_normal_(mean, std, generator);
}
Tensor & exponential_(Tensor& self, double lambd, Generator * generator) {
return self._th_exponential_(lambd, generator);
}
Tensor & geometric_(Tensor& self, double p, Generator * generator) {
return self._th_geometric_(p, generator);
}
// Functions
Tensor & diag_out(Tensor & result, const Tensor & self, int64_t diagonal) {
return at::_th_diag_out(result, self, diagonal);
}
Tensor diag(const Tensor & self, int64_t diagonal) {
return at::_th_diag(self, diagonal);
}
Tensor & cross_out(Tensor & result, const Tensor & self, const Tensor & other, int64_t dim) {
return at::_th_cross_out(result, self, other, dim);
}
Tensor cross(const Tensor & self, const Tensor & other, int64_t dim) {
return at::_th_cross(self, other, dim);
}
Tensor & triu_out(Tensor & result, const Tensor & self, int64_t diagonal) {
return at::_th_triu_out(result, self, diagonal);
}
Tensor triu(const Tensor & self, int64_t diagonal) {
return at::_th_triu(self, diagonal);
}
Tensor & tril_out(Tensor & result, const Tensor & self, int64_t diagonal) {
return at::_th_tril_out(result, self, diagonal);
}
Tensor tril(const Tensor & self, int64_t diagonal) {
return at::_th_tril(self, diagonal);
}
Tensor trace(const Tensor & self) {
return at::_th_trace(self);
}
Tensor & ne_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_ne_out(result, self, other);
}
Tensor ne(const Tensor & self, Scalar other) {
return at::_th_ne(self, other);
}
Tensor & ne_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_ne_out(result, self, other);
}
Tensor ne(const Tensor & self, const Tensor & other) {
return at::_th_ne(self, other);
}
Tensor & eq_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_eq_out(result, self, other);
}
Tensor eq(const Tensor & self, Scalar other) {
return at::_th_eq(self, other);
}
Tensor & eq_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_eq_out(result, self, other);
}
Tensor eq(const Tensor & self, const Tensor & other) {
return at::_th_eq(self, other);
}
Tensor & ge_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_ge_out(result, self, other);
}
Tensor ge(const Tensor & self, Scalar other) {
return at::_th_ge(self, other);
}
Tensor & ge_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_ge_out(result, self, other);
}
Tensor ge(const Tensor & self, const Tensor & other) {
return at::_th_ge(self, other);
}
Tensor & le_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_le_out(result, self, other);
}
Tensor le(const Tensor & self, Scalar other) {
return at::_th_le(self, other);
}
Tensor & le_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_le_out(result, self, other);
}
Tensor le(const Tensor & self, const Tensor & other) {
return at::_th_le(self, other);
}
Tensor & gt_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_gt_out(result, self, other);
}
Tensor gt(const Tensor & self, Scalar other) {
return at::_th_gt(self, other);
}
Tensor & gt_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_gt_out(result, self, other);
}
Tensor gt(const Tensor & self, const Tensor & other) {
return at::_th_gt(self, other);
}
Tensor & lt_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_lt_out(result, self, other);
}
Tensor lt(const Tensor & self, Scalar other) {
return at::_th_lt(self, other);
}
Tensor & lt_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_lt_out(result, self, other);
}
Tensor lt(const Tensor & self, const Tensor & other) {
return at::_th_lt(self, other);
}
Tensor & take_out(Tensor & result, const Tensor & self, const Tensor & index) {
return at::_th_take_out(result, self, index);
}
Tensor take(const Tensor & self, const Tensor & index) {
return at::_th_take(self, index);
}
Tensor & index_select_out(Tensor & result, const Tensor & self, int64_t dim, const Tensor & index) {
return at::_th_index_select_out(result, self, dim, index);
}
Tensor index_select(const Tensor & self, int64_t dim, const Tensor & index) {
return at::_th_index_select(self, dim, index);
}
Tensor & masked_select_out(Tensor & result, const Tensor & self, const Tensor & mask) {
return at::_th_masked_select_out(result, self, mask);
}
Tensor masked_select(const Tensor & self, const Tensor & mask) {
return at::_th_masked_select(self, mask);
}
Tensor & nonzero_out(Tensor & result, const Tensor & self) {
return at::_th_nonzero_out(result, self);
}
Tensor nonzero(const Tensor & self) {
return at::_th_nonzero(self);
}
Tensor & gather_out(Tensor & result, const Tensor & self, int64_t dim, const Tensor & index) {
return at::_th_gather_out(result, self, dim, index);
}
Tensor gather(const Tensor & self, int64_t dim, const Tensor & index) {
return at::_th_gather(self, dim, index);
}
Tensor & addcmul_out(Tensor & result, const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value) {
return at::_th_addcmul_out(result, self, tensor1, tensor2, value);
}
Tensor addcmul(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value) {
return at::_th_addcmul(self, tensor1, tensor2, value);
}
Tensor & addcdiv_out(Tensor & result, const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value) {
return at::_th_addcdiv_out(result, self, tensor1, tensor2, value);
}
Tensor addcdiv(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Scalar value) {
return at::_th_addcdiv(self, tensor1, tensor2, value);
}
std::tuple<Tensor &,Tensor &> gels_out(Tensor & X, Tensor & qr, const Tensor & self, const Tensor & A) {
return at::_th_gels_out(X, qr, self, A);
}
std::tuple<Tensor,Tensor> gels(const Tensor & self, const Tensor & A) {
return at::_th_gels(self, A);
}
std::tuple<Tensor &,Tensor &> trtrs_out(Tensor & X, Tensor & M, const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular) {
return at::_th_trtrs_out(X, M, self, A, upper, transpose, unitriangular);
}
std::tuple<Tensor,Tensor> trtrs(const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular) {
return at::_th_trtrs(self, A, upper, transpose, unitriangular);
}
std::tuple<Tensor &,Tensor &> symeig_out(Tensor & e, Tensor & V, const Tensor & self, bool eigenvectors, bool upper) {
return at::_th_symeig_out(e, V, self, eigenvectors, upper);
}
std::tuple<Tensor,Tensor> symeig(const Tensor & self, bool eigenvectors, bool upper) {
return at::_th_symeig(self, eigenvectors, upper);
}
std::tuple<Tensor &,Tensor &> eig_out(Tensor & e, Tensor & v, const Tensor & self, bool eigenvectors) {
return at::_th_eig_out(e, v, self, eigenvectors);
}
std::tuple<Tensor,Tensor> eig(const Tensor & self, bool eigenvectors) {
return at::_th_eig(self, eigenvectors);
}
std::tuple<Tensor &,Tensor &,Tensor &> svd_out(Tensor & U, Tensor & S, Tensor & V, const Tensor & self, bool some, bool compute_uv) {
return at::_th_svd_out(U, S, V, self, some, compute_uv);
}
std::tuple<Tensor,Tensor,Tensor> svd(const Tensor & self, bool some, bool compute_uv) {
return at::_th_svd(self, some, compute_uv);
}
Tensor & cholesky_out(Tensor & result, const Tensor & self, bool upper) {
return at::_th_potrf_out(result, self, upper);
}
Tensor cholesky(const Tensor & self, bool upper) {
return at::_th_potrf(self, upper);
}
Tensor & potrs_out(Tensor & result, const Tensor & self, const Tensor & input2, bool upper) {
return at::_th_potrs_out(result, self, input2, upper);
}
Tensor potrs(const Tensor & self, const Tensor & input2, bool upper) {
return at::_th_potrs(self, input2, upper);
}
Tensor & potri_out(Tensor & result, const Tensor & self, bool upper) {
return at::_th_potri_out(result, self, upper);
}
Tensor potri(const Tensor & self, bool upper) {
return at::_th_potri(self, upper);
}
std::tuple<Tensor &,Tensor &> pstrf_out(Tensor & u, Tensor & piv, const Tensor & self, bool upper, Scalar tol) {
return at::_th_pstrf_out(u, piv, self, upper, tol);
}
std::tuple<Tensor,Tensor> pstrf(const Tensor & self, bool upper, Scalar tol) {
return at::_th_pstrf(self, upper, tol);
}
std::tuple<Tensor &,Tensor &> qr_out(Tensor & Q, Tensor & R, const Tensor & self) {
return at::_th_qr_out(Q, R, self);
}
std::tuple<Tensor,Tensor> qr(const Tensor & self) {
return at::_th_qr(self);
}
std::tuple<Tensor &,Tensor &> geqrf_out(Tensor & result0, Tensor & result1, const Tensor & self) {
return at::geqrf_out(result0, result1, self);
}
std::tuple<Tensor,Tensor> geqrf(const Tensor & self) {
return at::_th_geqrf(self);
}
Tensor & orgqr_out(Tensor & result, const Tensor & self, const Tensor & input2) {
return at::_th_orgqr_out(result, self, input2);
}
Tensor orgqr(const Tensor & self, const Tensor & input2) {
return at::_th_orgqr(self, input2);
}
Tensor & ormqr_out(Tensor & result, const Tensor & self, const Tensor & input2, const Tensor & input3, bool left, bool transpose) {
return at::ormqr_out(result, self, input2, input3, left, transpose);
}
Tensor ormqr(const Tensor & self, const Tensor & input2, const Tensor & input3, bool left, bool transpose) {
return at::_th_ormqr(self, input2, input3, left, transpose);
}
std::tuple<Tensor &,Tensor &> btrifact_out(Tensor & A_LU, Tensor & pivots, const Tensor & self, bool pivot) {
return at::_th_btrifact_out(A_LU, pivots, self, pivot);
}
std::tuple<Tensor,Tensor> btrifact(const Tensor & self, bool pivot) {
return at::_th_btrifact(self, pivot);
}
std::tuple<Tensor &,Tensor &,Tensor &> btrifact_with_info_out(Tensor & A_LU, Tensor & pivots, Tensor & info, const Tensor & self, bool pivot) {
return at::_th_btrifact_with_info_out(A_LU, pivots, info, self, pivot);
}
std::tuple<Tensor,Tensor,Tensor> btrifact_with_info(const Tensor & self, bool pivot) {
return at::_th_btrifact_with_info(self, pivot);
}
Tensor & btrisolve_out(Tensor & result, const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots) {
return at::_th_btrisolve_out(result, self, LU_data, LU_pivots);
}
Tensor btrisolve(const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots) {
return at::_th_btrisolve(self, LU_data, LU_pivots);
}
Tensor & multinomial_out(Tensor & result, const Tensor & self, int64_t num_samples, bool replacement, Generator * generator) {
return at::_th_multinomial_out(result, self, num_samples, replacement, generator);
}
Tensor multinomial(const Tensor & self, int64_t num_samples, bool replacement, Generator * generator) {
return at::_th_multinomial(self, num_samples, replacement, generator);
}
Tensor & lgamma_out(Tensor & result, const Tensor & self) {
return at::_th_lgamma_out(result, self);
}
Tensor lgamma(const Tensor & self) {
return at::_th_lgamma(self);
}
Tensor & digamma_out(Tensor & result, const Tensor & self) {
return at::_th_digamma_out(result, self);
}
Tensor digamma(const Tensor & self) {
return at::_th_digamma(self);
}
Tensor & polygamma_out(Tensor & result, int64_t n, const Tensor & self) {
return at::_th_polygamma_out(result, n, self);
}
Tensor polygamma(int64_t n, const Tensor & self) {
return at::_th_polygamma(n, self);
}
Tensor & erfinv_out(Tensor & result, const Tensor & self) {
return at::_th_erfinv_out(result, self);
}
Tensor erfinv(const Tensor & self) {
return at::_th_erfinv(self);
}
Tensor & frac_out(Tensor & result, const Tensor & self) {
return at::_th_frac_out(result, self);
}
Tensor frac(const Tensor & self) {
return at::_th_frac(self);
}
Tensor dist(const Tensor & self, const Tensor & other, Scalar p) {
return at::_th_dist(self, other, p);
}
Tensor & reciprocal_out(Tensor & result, const Tensor & self) {
return at::_th_reciprocal_out(result, self);
}
Tensor reciprocal(const Tensor & self) {
return at::_th_reciprocal(self);
}
Tensor & neg_out(Tensor & result, const Tensor & self) {
return at::_th_neg_out(result, self);
}
Tensor neg(const Tensor & self) {
return at::_th_neg(self);
}
Tensor & atan2_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_atan2_out(result, self, other);
}
Tensor atan2(const Tensor & self, const Tensor & other) {
return at::_th_atan2(self, other);
}
Tensor & lerp_out(Tensor & result, const Tensor & self, const Tensor & end, Scalar weight) {
return at::_th_lerp_out(result, self, end, weight);
}
Tensor lerp(const Tensor & self, const Tensor & end, Scalar weight) {
return at::_th_lerp(self, end, weight);
}
Tensor & histc_out(Tensor & result, const Tensor & self, int64_t bins, Scalar min, Scalar max) {
return at::_th_histc_out(result, self, bins, min, max);
}
Tensor histc(const Tensor & self, int64_t bins, Scalar min, Scalar max) {
return at::_th_histc(self, bins, min, max);
}
Tensor & sign_out(Tensor & result, const Tensor & self) {
return at::_th_sign_out(result, self);
}
Tensor sign(const Tensor & self) {
return at::_th_sign(self);
}
Tensor & fmod_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_fmod_out(result, self, other);
}
Tensor fmod(const Tensor & self, Scalar other) {
return at::_th_fmod(self, other);
}
Tensor & fmod_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_fmod_out(result, self, other);
}
Tensor fmod(const Tensor & self, const Tensor & other) {
return at::_th_fmod(self, other);
}
Tensor & remainder_out(Tensor & result, const Tensor & self, Scalar other) {
return at::_th_remainder_out(result, self, other);
}
Tensor remainder(const Tensor & self, Scalar other) {
return at::_th_remainder(self, other);
}
Tensor & remainder_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_remainder_out(result, self, other);
}
Tensor remainder(const Tensor & self, const Tensor & other) {
return at::_th_remainder(self, other);
}
Tensor & min_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_min_out(result, self, other);
}
Tensor min(const Tensor & self, const Tensor & other) {
return at::_th_min(self, other);
}
Tensor min(const Tensor & self) {
return at::_th_min(self);
}
Tensor & max_out(Tensor & result, const Tensor & self, const Tensor & other) {
return at::_th_max_out(result, self, other);
}
Tensor max(const Tensor & self, const Tensor & other) {
return at::_th_max(self, other);
}
Tensor max(const Tensor & self) {
return at::_th_max(self);
}
Tensor median(const Tensor & self) {
return at::_th_median(self);
}
std::tuple<Tensor &,Tensor &> sort_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim, bool descending) {
return at::_th_sort_out(values, indices, self, dim, descending);
}
std::tuple<Tensor,Tensor> sort(const Tensor & self, int64_t dim, bool descending) {
return at::_th_sort(self, dim, descending);
}
std::tuple<Tensor &,Tensor &> topk_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t k, int64_t dim, bool largest, bool sorted) {
return at::_th_topk_out(values, indices, self, k, dim, largest, sorted);
}
std::tuple<Tensor,Tensor> topk(const Tensor & self, int64_t k, int64_t dim, bool largest, bool sorted) {
return at::_th_topk(self, k, dim, largest, sorted);
}
Tensor all(const Tensor & self) {
return at::_th_all(self);
}
Tensor any(const Tensor & self) {
return at::_th_any(self);
}
Tensor & renorm_out(Tensor & result, const Tensor & self, Scalar p, int64_t dim, Scalar maxnorm) {
return at::_th_renorm_out(result, self, p, dim, maxnorm);
}
Tensor renorm(const Tensor & self, Scalar p, int64_t dim, Scalar maxnorm) {
return at::_th_renorm(self, p, dim, maxnorm);
}
Tensor unfold(const Tensor & self, int64_t dimension, int64_t size, int64_t step) {
return self._th_unfold(dimension, size, step);
}
bool equal(const Tensor & self, const Tensor & other) {
return at::_th_equal(self, other);
}
Tensor & pow_out(Tensor & result, const Tensor & self, const Tensor & exponent) {
return at::_th_pow_out(result, self, exponent);
}
Tensor pow(const Tensor & self, const Tensor & exponent) {
return at::_th_pow(self, exponent);
}
Tensor & pow_out(Tensor & result, Scalar self, const Tensor & exponent) {
return at::_th_pow_out(result, self, exponent);
}
Tensor pow(Scalar self, const Tensor & exponent) {
return at::_th_pow(self, exponent);
}
Tensor & normal_out(Tensor & output, const Tensor & mean, double std, Generator * generator) {
return at::_th_normal_out(output, mean, std, generator);
}
Tensor normal(const Tensor & mean, double std, Generator * generator) {
return at::_th_normal(mean, std, generator);
}
Tensor & normal_out(Tensor & output, double mean, const Tensor & std, Generator * generator) {
return at::_th_normal_out(output, mean, std, generator);
}
Tensor normal(double mean, const Tensor & std, Generator * generator) {
return at::_th_normal(mean, std, generator);
}
Tensor & normal_out(Tensor & output, const Tensor & mean, const Tensor & std, Generator * generator) {
return at::_th_normal_out(output, mean, std, generator);
}
Tensor normal(const Tensor & mean, const Tensor & std, Generator * generator) {
return at::_th_normal(mean, std, generator);
}
Tensor alias(const Tensor & self) {
return at::_th_alias(self);
}
Tensor & _dirichlet_grad_out(Tensor & output, const Tensor & x, const Tensor & alpha, const Tensor & total) {
return at::_th_dirichlet_grad_out(output, x, alpha, total);
}
Tensor _dirichlet_grad(const Tensor & x, const Tensor & alpha, const Tensor & total) {
return at::_th_dirichlet_grad(x, alpha, total);
}
}} // namespace at::native