forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNormalization.cpp
229 lines (190 loc) · 8.77 KB
/
Normalization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include "ATen/ATen.h"
#include "ATen/NativeFunctions.h"
#include "ATen/Config.h"
#include "ATen/detail/CUDAHooksInterface.h"
#include <vector>
static const int MIOPEN_DIM_MAX = 4;
namespace at { namespace native {
namespace {
void check_dims_match_num_input_features(const char* arg_name, int64_t expected, int64_t actual){
AT_CHECK(actual == expected,
arg_name, " should contain ", expected, " elements not ", actual);
}
static inline Tensor repeat_if_defined(const Tensor& t, int64_t repeat) {
if (t.defined()) {
return t.repeat(repeat);
}
return t;
}
}
Tensor batch_norm(
const Tensor& input, const Tensor& weight /* optional */, const Tensor& bias /* optional */,
const Tensor& running_mean /* optional */, const Tensor& running_var /* optional */,
bool training, double momentum, double eps, bool cudnn_enabled) {
auto num_features = input.sizes()[1];
if (running_mean.defined()) {
check_dims_match_num_input_features("running_mean", num_features, running_mean.numel());
} else if (!training) {
AT_ERROR("running_mean must be defined in evaluation mode");
}
if (running_var.defined()) {
check_dims_match_num_input_features("running_var", num_features, running_var.numel());
} else if (!training) {
AT_ERROR("running_var must be defined in evaluation mode");
}
if (weight.defined()) {
check_dims_match_num_input_features("weight", num_features, weight.numel());
}
if (bias.defined()) {
check_dims_match_num_input_features("bias", num_features, bias.numel());
}
bool use_cudnn = false;
use_cudnn = (input.type().is_cuda()
&& (input.type().scalarType() != at::kHalf
|| weight.type().scalarType() == at::kFloat)
&& weight.defined() && bias.defined()
&& ((running_mean.defined() && running_var.defined())
|| (!running_mean.defined() && !running_var.defined() && training))
&& input.size(0) <= 131070
&& detail::getCUDAHooks().compiledWithCuDNN()
&& cudnn_enabled && detail::getCUDAHooks().versionCuDNN() >= 5110L);
if (use_cudnn && eps >= detail::getCUDAHooks().batchnormMinEpsilonCuDNN()) {
return std::get<0>(at::cudnn_batch_norm(
input.contiguous(), weight.contiguous(),
bias.contiguous(),
running_mean.defined() ? running_mean.contiguous() : running_mean,
running_var.defined() ? running_var.contiguous() : running_var,
training, momentum, eps));
}
bool use_miopen = (input.type().is_cuda()
&& input.dim() <= MIOPEN_DIM_MAX
&& input.type().scalarType() != at::kDouble
&& (input.type().scalarType() == weight.type().scalarType())
&& weight.defined() && bias.defined()
&& ((running_mean.defined() && running_var.defined())
|| (!running_mean.defined() && !running_var.defined() && training))
&& detail::getCUDAHooks().compiledWithMIOpen()
);
if (use_miopen) {
return std::get<0>(at::miopen_batch_norm(
input.contiguous(), weight.contiguous(), bias.contiguous(),
running_mean.defined() ? running_mean.contiguous() : running_mean,
running_var.defined() ? running_var.contiguous() : running_var,
training, momentum, eps));
}
return at::thnn_batch_norm(
input.contiguous(), weight, bias,
running_mean, running_var, training, momentum, eps);
}
Tensor instance_norm(
const Tensor& input, const Tensor& weight /* optional */, const Tensor& bias /* optional */,
const Tensor& running_mean /* optional */, const Tensor& running_var /* optional */,
bool use_input_stats, double momentum, double eps, bool cudnn_enabled) {
AT_CHECK(use_input_stats || (running_mean.defined() && running_var.defined()),
"Expected running_mean and running_var to be defined when use_input_stats is false");
std::vector<int64_t> shape = input.sizes().vec();
int64_t b = input.size(0);
int64_t c = input.size(1);
shape[1] = b * c;
shape[0] = 1;
Tensor weight_ = repeat_if_defined(weight, b);
Tensor bias_ = repeat_if_defined(bias, b);
Tensor running_mean_ = repeat_if_defined(running_mean, b);
Tensor running_var_ = repeat_if_defined(running_var, b);
auto input_reshaped = input.contiguous().view(shape);
auto out = at::batch_norm(input_reshaped, weight_, bias_, running_mean_, running_var_,
use_input_stats, momentum, eps, cudnn_enabled);
// we alias running_mean and running_var because they are const but we want to modify their data
if (running_mean.defined()) {
at::alias(running_mean).copy_(running_mean_.view({ b, c }).mean(0, false));
}
if (running_var.defined()) {
at::alias(running_var).copy_(running_var_.view({ b, c }).mean(0, false));
}
return out.view(input.sizes());
}
Tensor layer_norm(const Tensor& input, IntList normalized_shape,
const Tensor& weight /* optional */, const Tensor& bias /* optional */,
double eps, bool cudnn_enabled) {
int64_t normalized_ndim = normalized_shape.size();
AT_CHECK(normalized_ndim >= 1,
"Expected normalized_shape to be at least 1-dimensional, i.e., ",
"containing at least one element, but got normalized_shape=",
normalized_shape);
AT_CHECK(!weight.defined() || weight.sizes().equals(normalized_shape),
"Expected weight to be of same shape as normalized_shape, but got ",
"weight of shape ", weight.sizes(), " and normalized_shape=",
normalized_shape);
AT_CHECK(!bias.defined() || bias.sizes().equals(normalized_shape),
"Expected bias to be of same shape as normalized_shape, but got ",
"bias of shape ", bias.sizes(), " and normalized_shape=",
normalized_shape);
auto input_shape = input.sizes();
auto input_ndim = input.dim();
if (input_ndim < normalized_ndim ||
!input_shape.slice(input_ndim - normalized_ndim).equals(normalized_shape)) {
std::stringstream ss;
ss << "Given normalized_shape=" << normalized_shape
<< ", expected input with shape [*";
for (auto size : normalized_shape) {
ss << ", " << size;
}
ss << "], but got input of size" << input_shape;
AT_ERROR(ss.str());
}
int64_t n = 1;
for (int64_t i = 0; i < input_ndim - normalized_ndim; i++) {
n *= input_shape[i];
}
// Apply layer norm
auto input_reshaped = input.contiguous().view({1, n, -1});
auto out = at::batch_norm(input_reshaped, {}, {}, {}, {}, true, 0, eps,
cudnn_enabled);
out = out.view(input_shape);
if (weight.defined() && bias.defined()) {
return bias.addcmul(out, weight, 1);
} else if (weight.defined()) {
return out.mul(weight);
} else if (bias.defined()) {
return out.add(bias);
} else {
return out;
}
}
Tensor group_norm(const Tensor& input, int64_t num_groups,
const Tensor& weight /* optional */, const Tensor& bias /* optional */,
double eps, bool cudnn_enabled) {
auto input_shape = input.sizes();
int64_t b = input.size(0);
int64_t c = input.size(1);
AT_CHECK(c % num_groups == 0,
"Expected number of channels in input to be divisible by ",
"num_groups, but got input of shape ", input.sizes(), " and "
"num_groups=", num_groups);
AT_CHECK(!weight.defined() || (weight.dim() == 1 && weight.numel() == c),
"Expected weight to be a vector of size equal to the number of ",
"channels in input, but got weight of shape ", weight.sizes(),
" and input of shape ", input.sizes());
AT_CHECK(!bias.defined() || (bias.dim() == 1 && bias.numel() == c),
"Expected bias to be a vector of size equal to the number of ",
"channels in input, but got bias of shape ", weight.sizes(),
" and input of shape ", input.sizes());
// Apply group norm
auto input_reshaped = input.contiguous().view({1, b * num_groups, -1});
auto out = at::batch_norm(input_reshaped, {}, {}, {}, {}, true, 0, eps,
cudnn_enabled);
out = out.view(input_shape);
if (!weight.defined() && !bias.defined()) {
return out;
}
std::vector<int64_t> affine_param_shape(input.dim(), 1);
affine_param_shape[1] = c;
if (weight.defined() && bias.defined()) {
return bias.view(affine_param_shape).addcmul(out, weight.view(affine_param_shape), 1);
} else if (weight.defined()) {
return out.mul(weight.view(affine_param_shape));
} else {
return out.add(bias.view(affine_param_shape));
}
}
}} // at::native