forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dropout.cu
162 lines (148 loc) · 6.93 KB
/
Dropout.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#include "ATen/ATen.h"
#include "ATen/AccumulateType.h"
#include "ATen/cuda/CUDAApplyUtils.cuh"
#include "ATen/cuda/detail/IndexUtils.cuh"
#include "ATen/cuda/detail/TensorInfo.cuh"
#include "curand_kernel.h"
#include <THC/THCGeneral.h>
#include <THC/THCTensorRandom.h>
#include <THC/THCGenerator.hpp>
THCGenerator* THCRandom_getGenerator(THCState* state);
namespace at{
namespace native{
namespace {
// philox generates 128 bits of randomness at a time. Kernel uses this explicitly by putting suitably transformed result into float4
// for all members of float4 to be consumed UNROLL has to be 4. Don't change!
const int UNROLL = 4;
std::pair<uint64_t, uint64_t> next_philox_seed(at::Generator* gen, uint64_t increment) {
auto gen_ = THCRandom_getGenerator(at::globalContext().getTHCState());
uint64_t offset = gen_->state.philox_seed_offset.fetch_add(increment);
return std::make_pair(gen_->state.initial_seed, offset);
}
template <
typename scalar_t,
typename accscalar_t,
typename IndexType,
int ADims>
#if __CUDA_ARCH__ >= 350
__launch_bounds__(256,8)
#endif
__global__ void
fused_dropout_kernel(cuda::detail::TensorInfo<scalar_t, IndexType> a,
cuda::detail::TensorInfo<scalar_t, IndexType> b,
cuda::detail::TensorInfo<uint8_t, IndexType> c,
IndexType totalElements, accscalar_t p, std::pair<uint64_t, uint64_t> seeds
) {
accscalar_t pinv = accscalar_t(1)/p;
IndexType idx = blockIdx.x * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
idx,
seeds.second,
&state);
IndexType rounded_size = ((totalElements - 1)/(blockDim.x * gridDim.x * UNROLL)+1) *
blockDim.x * gridDim.x * UNROLL;
for (IndexType linearIndex = idx;
linearIndex < rounded_size;
linearIndex += gridDim.x * blockDim.x*UNROLL) {
//curand_uniform_double was pure evil anyway, not doing what it promises, and there's nothing for halfs, so generate float for everything
float4 rand = curand_uniform4(&state);
scalar_t src[UNROLL];
rand.x = rand.x < p;
rand.y = rand.y < p;
rand.z = rand.z < p;
rand.w = rand.w < p;
for (int ii = 0; ii < UNROLL; ii++) {
IndexType li = linearIndex + blockDim.x * gridDim.x * ii;
if (li < totalElements) {
// Convert `linearIndex` into an offset of `a`
const IndexType aOffset =
cuda::detail::IndexToOffset<scalar_t, IndexType, ADims>::get(li, a);
src[ii] = a.data[aOffset];
}
}
for (int ii = 0; ii < UNROLL; ii++) {
IndexType li = linearIndex + blockDim.x * gridDim.x * ii;
if (li < totalElements) {
// Convert `linearIndex` into an offset of `b`
const IndexType bOffset =
cuda::detail::IndexToOffset<scalar_t, IndexType, 1>::get(li, b);
b.data[bOffset] = src[ii]*(&rand.x)[ii]*pinv;
c.data[bOffset] = (uint8_t)(&rand.x)[ii];
}
}
__syncthreads();
}
}
template<typename scalar_t, typename accscalar_t>
void masked_scale_kernel(at::Tensor& ret, const at::Tensor src, const at::Tensor mask, accscalar_t scale){
at::cuda::CUDA_tensor_apply3<scalar_t, scalar_t, uint8_t>(ret, src, mask, [scale]__device__(scalar_t& ret_val, const scalar_t& src_val, const uint8_t mask_val){
ret_val = (float)mask_val * src_val * scale;
});
}
} //anonymous namespace
std::tuple<Tensor,Tensor>
fused_dropout_cuda(const Tensor& self, double p, Generator * gen){
Tensor ret = at::empty_like(self);
Tensor mask = at::empty(self.sizes(), self.options().dtype(kByte));
const int64_t nelem = self.numel();
const int64_t block_size = 256;
unsigned int blocks_per_sm = at::cuda::getCurrentDeviceProperties()->maxThreadsPerMultiProcessor/block_size;
dim3 dim_block(block_size);
dim3 grid((nelem + block_size -1)/block_size);
grid.x = std::min((unsigned int)at::cuda::getCurrentDeviceProperties()->multiProcessorCount * blocks_per_sm, grid.x);
//number of times random will be generated per thread, to offset philox counter in thc random state
int64_t counter_offset = ((nelem - 1)/(block_size*grid.x*UNROLL)+1)*UNROLL;
if (cuda::detail::canUse32BitIndexMath(self)){
AT_DISPATCH_FLOATING_TYPES_AND_HALF(self.type(), "fused_dropout", [&] {
using accscalar_t = acc_type<scalar_t, true>;
accscalar_t pa = (accscalar_t)(p);
auto self_info = cuda::detail::getTensorInfo<scalar_t, unsigned int>(self);
auto ret_info = cuda::detail::getTensorInfo<scalar_t, unsigned int>(ret);
auto mask_info = cuda::detail::getTensorInfo<uint8_t, unsigned int>(mask);
self_info.collapseDims();
ret_info.collapseDims();
mask_info.collapseDims(); //ret and mask are collapsed to 1d contiguous tensor
switch (self_info.dims) {
case 1:
fused_dropout_kernel<scalar_t, accscalar_t, unsigned int, 1><<<grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(self_info, ret_info, mask_info, nelem, pa, next_philox_seed(gen,counter_offset));
break;
default:
fused_dropout_kernel<scalar_t, accscalar_t, unsigned int, -1><<<grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(self_info, ret_info, mask_info, nelem, pa, next_philox_seed(gen,counter_offset));
}
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(self.type(), "fused_dropout", [&] {
using accscalar_t = acc_type<scalar_t, true>;
accscalar_t pa = (accscalar_t)(p);
auto self_info = cuda::detail::getTensorInfo<scalar_t, uint64_t>(self);
auto ret_info = cuda::detail::getTensorInfo<scalar_t, uint64_t>(ret);
auto mask_info = cuda::detail::getTensorInfo<uint8_t, uint64_t>(mask);
self_info.collapseDims();
ret_info.collapseDims();
mask_info.collapseDims(); //ret and mask are collapsed to 1d contiguous tensor
switch (self_info.dims) {
case 1:
fused_dropout_kernel<scalar_t, accscalar_t, uint64_t, 1><<<grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(self_info, ret_info, mask_info, nelem, pa, next_philox_seed(gen,counter_offset));
break;
default:
fused_dropout_kernel<scalar_t, accscalar_t, uint64_t, -1><<<grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(self_info, ret_info, mask_info, nelem, pa, next_philox_seed(gen,counter_offset));
}
});
}
THCudaCheck(cudaGetLastError());
return std::tuple<Tensor,Tensor>(ret, mask);
}
Tensor masked_scale_cuda(const Tensor& self, const Tensor& mask, double scale){
Tensor ret = at::empty_like(self);
AT_CHECK(mask.type().scalarType() == at::ScalarType::Byte, "mask should be torch.uint8 dtype");
AT_DISPATCH_FLOATING_TYPES_AND_HALF(ret.type(), "masked_scale", [&] {
using accscalar_t = acc_type<scalar_t, true>;
accscalar_t pa = (accscalar_t)(scale);
masked_scale_kernel<scalar_t>(ret, self, mask, pa);
});
return ret;
}
}
}