forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistKLDivCriterion.cu
64 lines (56 loc) · 1.59 KB
/
DistKLDivCriterion.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include "THCUNN.h"
#include "common.h"
#include "TH/THHalf.h"
#include "THCHalfAutoNumerics.cuh"
#include "THCApply.cuh"
#include <thrust/fill.h>
#include <thrust/functional.h>
#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
#include <thrust/inner_product.h>
template <typename Dtype, typename Acctype>
struct kl_functor
{
__host__ __device__ Acctype operator()(const Dtype& x, const Dtype& y) const
{
Acctype yAcc = ScalarConvert<Dtype, Acctype>::to(y);
return y > 0 ? yAcc * (THCNumerics<Acctype>::log(yAcc) - x) : Acctype(0);
}
};
template <typename Dtype>
struct kl_updateOutput_no_reduce_functor
{
__forceinline__ __host__ __device__ void operator()(
const Dtype *x,
const Dtype *y,
Dtype *output)
{
*output = *y > 0 ? *y * (THCNumerics<Dtype>::log(*y) - *x) : ScalarConvert<int, Dtype>::to(0);
}
};
template <typename Dtype>
struct kl_updateGradInput_no_reduce_functor
{
__host__ __device__ void operator()(
const Dtype *target,
const Dtype *gradOutput,
Dtype *gradInput)
{
*gradInput = *target > 0 ? (-*target) * *gradOutput : ScalarConvert<int, Dtype>::to(0);
}
};
template <typename Dtype>
struct kl_updateGradInput_functor
{
const Dtype norm;
const Dtype gradOutput;
kl_updateGradInput_functor(Dtype norm_, Dtype gradOutput_)
: norm(norm_), gradOutput(gradOutput_)
{}
__host__ __device__ Dtype operator()(const Dtype& x, const Dtype& y) const
{
return y > 0 ? norm * (-y) * gradOutput : ScalarConvert<int, Dtype>::to(0);
}
};
#include "generic/DistKLDivCriterion.cu"
#include "THCGenerateFloatTypes.h"