forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLookupTable.cu
231 lines (198 loc) · 7.78 KB
/
LookupTable.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include "THCUNN.h"
#include "common.h"
#include "THCThrustAllocator.cuh"
#include <thrust/unique.h>
#include "TH/THHalf.h"
#include "THCHalfAutoNumerics.cuh"
#include "THCTensorSort.cuh"
#include "../THC/THCTensorMathReduce.cuh"
#ifdef __HIP_PLATFORM_HCC__
const int WARP_SIZE = 64;
#else
const int WARP_SIZE = 32;
#endif
template
<typename Dtype,
typename Acctype>
__global__ void cunn_LookupTable_accGradParametersKernelByFeature
(int64_t *indices,
Dtype *grad,
Dtype *grad_weight,
Dtype scale,
ptrdiff_t n,
int64_t stride,
int padding_idx)
{
extern __shared__ char buf[];
Acctype* smem = (Acctype*)buf;
Acctype* my_s = smem + WARP_SIZE*threadIdx.y;
int* indices_batch = (int*)(buf + sizeof(Acctype)*WARP_SIZE*blockDim.y);
const int s = (int)stride; // OK to make int, we don't expect 2 billion+ embedding row size
const int f = threadIdx.x + blockIdx.x*blockDim.x; // feature_dim
for(int batch_start = 0; batch_start < n; batch_start += blockDim.x*blockDim.y)
{
// Entire block cooperates to load a batch of 1024 indices to process
int tid = threadIdx.x + threadIdx.y*blockDim.x;
if(batch_start + tid < n)
indices_batch[tid] = (int)(indices[batch_start + tid] - TH_INDEX_BASE);
// Loop over the batch of <= 1024 loaded indices in chunks of blockDim.y = 32
for(int chunk_start = batch_start; chunk_start < n; chunk_start += blockDim.y)
{
// This does double duty: it makes sure indices_batch is ready, and it makes sure match-group
// leaders are done with their accumulates before other warps start loading again.
__syncthreads();
int n_this_chunk = (n - chunk_start) < blockDim.y ? (n - chunk_start) : blockDim.y;
int src_row = chunk_start + threadIdx.y;
int dst_row = indices_batch[src_row - batch_start]; // This warp's target row in grad_weight
// All warps load their smem segments with incoming grad data
if(src_row < n && f < s && dst_row != padding_idx - TH_INDEX_BASE)
my_s[threadIdx.x] = ScalarConvert<Dtype, Acctype>::to(scale*grad[src_row*stride + f]);
__syncthreads();
// To ensure determinism, we can't just have each warp add its grad data to its dst_row.
// We need to check if any other warps pulled grad data targeting dst_row.
// If so, we elect the first warp in each matching group as the leader.
// Each leader warp serializes the accumulates targeting dst_row in shared memory,
// then finishes by adding the accumulated buffer to dst_row in grad_weight.
if(dst_row != padding_idx - TH_INDEX_BASE && src_row < n) // Per-warp exit condition
{
int match_found_this_thread =
(dst_row == indices_batch[chunk_start - batch_start + threadIdx.x]);
if(threadIdx.x >= n_this_chunk)
match_found_this_thread = 0;
unsigned int matchmask = WARP_BALLOT(match_found_this_thread);
int first_remaining_peer = __ffs(matchmask) - 1;
if(threadIdx.y == first_remaining_peer) // Nominate lowest-indexed warp as the leader
{
matchmask ^= (1 << first_remaining_peer);
while(matchmask)
{
first_remaining_peer = __ffs(matchmask) - 1;
my_s[threadIdx.x] += smem[threadIdx.x + WARP_SIZE*first_remaining_peer];
matchmask ^= (1 << first_remaining_peer);
}
if(f < s)
grad_weight[dst_row*stride + f] += ScalarConvert<Acctype, Dtype>::to(my_s[threadIdx.x]);
}
}
}
}
}
template <typename Dtype, typename Acctype>
__global__ void cunn_LookupTable_accGradParametersKernel(
int64_t *input, int64_t *indices, Dtype *gradOutput, Dtype *gradWeight,
int64_t *count, Dtype defaultScale, ptrdiff_t numel, int64_t stride, int paddingValue) {
int idx = blockIdx.x * 4 + threadIdx.y;
// Each warp is responsible for an input into the LookupTable.
// If the preceding input has the same as this input, then the warp
// exits immediately. The warp also processes subsequent inputs with the
// same value.
//
// Input Warp
// 1 <warp 1>
// 1 <warp 1> (<warp 2> exits without doing any work)
// 5 <warp 3>
// 8 <warp 4>
// Number of values proceessed by each thread (grain size)
const int SZ = 4;
if (idx < numel
&& (idx == 0 || input[idx] != input[idx - 1])
&& input[idx] != paddingValue) {
do {
const int startFeature = threadIdx.x + blockIdx.y * blockDim.x * SZ;
const int weightRow = ((int) input[idx] - TH_INDEX_BASE) * stride;
const int gradOutputRow = ((int) indices[idx] - TH_INDEX_BASE) * stride;
const Acctype scale = count ? ScalarConvert<Dtype, Acctype>::to(defaultScale) / count[idx] : ScalarConvert<Dtype, Acctype>::to(defaultScale);
Acctype gradient[SZ];
Acctype weight[SZ];
#pragma unroll
for (int ii = 0; ii < SZ; ii++)
{
int featureDim = startFeature + ii * WARP_SIZE;
if (featureDim < stride)
{
gradient[ii] = ScalarConvert<Dtype, Acctype>::to(gradOutput[gradOutputRow + featureDim]);
weight[ii] = ScalarConvert<Dtype, Acctype>::to(gradWeight[weightRow + featureDim]);
}
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++)
{
weight[ii] += gradient[ii] * scale;
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++)
{
int featureDim = startFeature + ii * WARP_SIZE;
if (featureDim < stride)
{
gradWeight[weightRow + featureDim] = ScalarConvert<Acctype, Dtype>::to(weight[ii]);
}
}
idx++;
} while (idx < numel && input[idx] == input[idx - 1]);
}
}
template <typename DType, typename AccType, int Norm>
struct FastPow
{
__host__ __device__
static inline AccType pow(DType x, AccType norm) {
AccType xA = ScalarConvert<DType, AccType>::to(x);
return std::pow(std::abs(xA), norm);
}
};
template <typename DType, typename AccType>
struct FastPow<DType, AccType, 1>
{
__host__ __device__
static inline AccType pow(DType x, AccType _) {
AccType xA = ScalarConvert<DType, AccType>::to(x);
return std::abs(xA);
}
};
template <typename DType, typename AccType>
struct FastPow<DType, AccType, 2>
{
__host__ __device__
static inline AccType pow(DType x, AccType _) {
AccType xA = ScalarConvert<DType, AccType>::to(x);
return xA * xA;
}
};
/* Calculate norms of the rows of weight_ptr given by idx_ptr and capture them in norms */
template <typename DType, typename AccType, typename IndexType, int Norm>
__global__
void calculate_norms_and_renorm(DType *weights,
THCIndex_t *indices,
AccType normType,
AccType maxNorm,
IndexType dim)
{
// Some casting hacks since dynamic shared memory and templates don't work together:
extern __shared__ unsigned char smem[];
AccType *sdata = reinterpret_cast<AccType *>(smem);
IndexType tid = threadIdx.x;
IndexType baseIndex = (indices[blockIdx.x] - TH_INDEX_BASE) * dim;
AccType accZero = ScalarConvert<int, AccType>::to(0);
AccType v = accZero;
for (IndexType i = tid; i < dim; i += blockDim.x) {
v += FastPow<DType, AccType, Norm>::pow(weights[baseIndex + i], normType);
}
v = reduceBlock<AccType, ReduceAdd<AccType>>
(sdata, blockDim.x, v, ReduceAdd<AccType>(), accZero);
if (tid == 0) {
sdata[0] = std::pow(v,
THCNumerics<AccType>::div(ScalarConvert<int, AccType>::to(1), normType)
);
}
__syncthreads();
// now we renormalize the blocks that need it
if (sdata[0] > maxNorm) {
DType factor = ScalarConvert<AccType, DType>::to(maxNorm / (sdata[0] + 1e-7));
for (IndexType i = tid; i < dim; i += blockDim.x) {
weights[baseIndex + i] *= factor;
}
}
}
#include "generic/LookupTable.cu"
#include "THCGenerateFloatTypes.h"