forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialAveragePooling.cu
86 lines (83 loc) · 3.67 KB
/
SpatialAveragePooling.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include "THCUNN.h"
#include "THCTensor.hpp"
#include "TH/THHalf.h"
#include "THCHalfAutoNumerics.cuh"
#include "common.h"
template <typename Dtype, typename Acctype, bool COUNT_INCLUDE_PAD>
__global__ void AvePoolForward(const int nthreads,
const Dtype* const bottom_data, const int num, const int channels,
const int height, const int width, const int pooled_height,
const int pooled_width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w, const int pad_h, const int pad_w,
Dtype* const top_data) {
CUDA_KERNEL_LOOP(index, nthreads) {
const int pw = index % pooled_width;
const int ph = (index / pooled_width) % pooled_height;
const int c = (index / pooled_width / pooled_height) % channels;
const int n = index / pooled_width / pooled_height / channels;
int hstart = ph * stride_h - pad_h;
int wstart = pw * stride_w - pad_w;
int hend = min(hstart + kernel_h, height + pad_h);
int wend = min(wstart + kernel_w, width + pad_w);
const int pool_size = (hend - hstart) * (wend - wstart);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
hend = min(hend, height);
wend = min(wend, width);
Acctype aveval = Acctype(0);
const Dtype* const bottom_slice = bottom_data + (n * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
aveval += bottom_slice[h * width + w];
}
}
if(COUNT_INCLUDE_PAD)
top_data[index] = ScalarConvert<Acctype, Dtype>::to(aveval / pool_size);
else
top_data[index] = ScalarConvert<Acctype, Dtype>::to(aveval / ((hend - hstart) * (wend - wstart)));
}
}
template <typename Dtype, typename Acctype, bool COUNT_INCLUDE_PAD>
__global__ void AvePoolBackward(const int nthreads, const Dtype* const top_diff,
const int num, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
Dtype* const bottom_diff) {
CUDA_KERNEL_LOOP(index, nthreads) {
// find out the local index
// find out the local offset
const int w = index % width + pad_w;
const int h = (index / width) % height + pad_h;
const int c = (index / width / height) % channels;
const int n = index / width / height / channels;
const int phstart = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
const int phend = min(h / stride_h + 1, pooled_height);
const int pwstart = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
const int pwend = min(w / stride_w + 1, pooled_width);
Acctype gradient = Acctype(0);
const Dtype* const top_diff_slice =
top_diff + (n * channels + c) * pooled_height * pooled_width;
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
// figure out the pooling size
int hstart = ph * stride_h - pad_h;
int wstart = pw * stride_w - pad_w;
int hend = min(hstart + kernel_h, height + pad_h);
int wend = min(wstart + kernel_w, width + pad_w);
int pool_size = (hend - hstart) * (wend - wstart);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
hend = min(hend, height);
wend = min(wend, width);
if(COUNT_INCLUDE_PAD)
gradient += top_diff_slice[ph * pooled_width + pw] / pool_size;
else
gradient += top_diff_slice[ph * pooled_width + pw] / ((hend - hstart) * (wend - wstart));
}
}
bottom_diff[index] = ScalarConvert<Acctype, Dtype>::to(gradient);
}
}
#include "generic/SpatialAveragePooling.cu"
#include "THCGenerateFloatTypes.h"