forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblob_gpu_test.cc
218 lines (204 loc) · 8.85 KB
/
blob_gpu_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#include <iostream> // NOLINT
#include <gtest/gtest.h>
#include "caffe2/core/blob.h"
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/proto/caffe2_pb.h"
namespace caffe2 {
namespace {
template <typename T> class TensorGPUTest : public ::testing::Test {};
template <typename T> class TensorGPUDeathTest : public ::testing::Test {};
typedef ::testing::Types<char, int, float> TensorTypes;
TYPED_TEST_CASE(TensorGPUTest, TensorTypes);
TYPED_TEST_CASE(TensorGPUDeathTest, TensorTypes);
TYPED_TEST(TensorGPUTest, TensorInitializedEmpty) {
if (!caffe2::HasCudaGPU()) return;
Tensor tensor(CUDA);
EXPECT_EQ(tensor.numel(), 0);
EXPECT_EQ(tensor.ndim(), 1);
vector<int> dims(3);
dims[0] = 2;
dims[1] = 3;
dims[2] = 5;
tensor.Resize(dims);
EXPECT_EQ(tensor.ndim(), 3);
EXPECT_EQ(tensor.dim32(0), 2);
EXPECT_EQ(tensor.dim32(1), 3);
EXPECT_EQ(tensor.dim32(2), 5);
EXPECT_TRUE(tensor.mutable_data<TypeParam>() != nullptr);
EXPECT_TRUE(tensor.data<TypeParam>() != nullptr);
}
TYPED_TEST(TensorGPUTest, TensorInitializedNonEmpty) {
if (!HasCudaGPU()) return;
vector<int> dims(3);
dims[0] = 2;
dims[1] = 3;
dims[2] = 5;
Tensor tensor(dims, CUDA);
EXPECT_EQ(tensor.ndim(), 3);
EXPECT_EQ(tensor.dim32(0), 2);
EXPECT_EQ(tensor.dim32(1), 3);
EXPECT_EQ(tensor.dim32(2), 5);
EXPECT_TRUE(tensor.mutable_data<TypeParam>() != nullptr);
EXPECT_TRUE(tensor.data<TypeParam>() != nullptr);
dims[0] = 7;
dims[1] = 11;
dims[2] = 13;
dims.push_back(17);
tensor.Resize(dims);
EXPECT_EQ(tensor.ndim(), 4);
EXPECT_EQ(tensor.dim32(0), 7);
EXPECT_EQ(tensor.dim32(1), 11);
EXPECT_EQ(tensor.dim32(2), 13);
EXPECT_EQ(tensor.dim32(3), 17);
EXPECT_TRUE(tensor.mutable_data<TypeParam>() != nullptr);
EXPECT_TRUE(tensor.data<TypeParam>() != nullptr);
}
TYPED_TEST(TensorGPUTest, TensorShareData) {
if (!HasCudaGPU()) return;
vector<int> dims(3);
dims[0] = 2;
dims[1] = 3;
dims[2] = 5;
Tensor tensor(dims, CUDA);
Tensor other_tensor(dims, CUDA);
EXPECT_TRUE(tensor.mutable_data<TypeParam>() != nullptr);
other_tensor.ShareData(tensor);
EXPECT_TRUE(tensor.data<TypeParam>() != nullptr);
EXPECT_TRUE(other_tensor.data<TypeParam>() != nullptr);
EXPECT_EQ(tensor.data<TypeParam>(), other_tensor.data<TypeParam>());
}
TYPED_TEST(TensorGPUTest, TensorShareDataCanUseDifferentShapes) {
if (!HasCudaGPU()) return;
vector<int> dims(3);
dims[0] = 2;
dims[1] = 3;
dims[2] = 5;
vector<int> alternate_dims(1);
alternate_dims[0] = 2 * 3 * 5;
Tensor tensor(dims, CUDA);
Tensor other_tensor(alternate_dims, CUDA);
EXPECT_TRUE(tensor.mutable_data<TypeParam>() != nullptr);
other_tensor.ShareData(tensor);
EXPECT_EQ(other_tensor.ndim(), 1);
EXPECT_EQ(other_tensor.dim32(0), alternate_dims[0]);
EXPECT_TRUE(tensor.data<TypeParam>() != nullptr);
EXPECT_TRUE(other_tensor.data<TypeParam>() != nullptr);
EXPECT_EQ(tensor.data<TypeParam>(), other_tensor.data<TypeParam>());
}
TYPED_TEST(TensorGPUTest, NoLongerSharesAfterResize) {
if (!HasCudaGPU()) return;
vector<int> dims(3);
dims[0] = 2;
dims[1] = 3;
dims[2] = 5;
Tensor tensor(dims, CUDA);
Tensor other_tensor(dims, CUDA);
EXPECT_TRUE(tensor.mutable_data<TypeParam>() != nullptr);
other_tensor.ShareData(tensor);
EXPECT_EQ(tensor.data<TypeParam>(), other_tensor.data<TypeParam>());
auto* old_pointer = other_tensor.data<TypeParam>();
dims[0] = 7;
tensor.Resize(dims);
EXPECT_EQ(old_pointer, other_tensor.data<TypeParam>());
EXPECT_NE(old_pointer, tensor.mutable_data<TypeParam>());
}
TYPED_TEST(TensorGPUDeathTest, CannotAccessDataWhenEmpty) {
if (!HasCudaGPU()) return;
::testing::FLAGS_gtest_death_test_style = "threadsafe";
Tensor tensor(CUDA);
EXPECT_EQ(tensor.ndim(), 1);
EXPECT_EQ(tensor.numel(), 0);
EXPECT_THROW(tensor.data<TypeParam>(), EnforceNotMet);
}
#define TEST_SERIALIZATION_GPU_WITH_TYPE(TypeParam, field_name) \
TEST(TensorGPUTest, TensorSerialization_##TypeParam) { \
if (!HasCudaGPU()) { \
return; \
} \
Blob blob; \
Tensor cpu_tensor(CPU); \
cpu_tensor.Resize(2, 3); \
for (int i = 0; i < 6; ++i) { \
cpu_tensor.mutable_data<TypeParam>()[i] = static_cast<TypeParam>(i); \
} \
BlobGetMutableTensor(&blob, CUDA)->CopyFrom(cpu_tensor); \
string serialized = SerializeBlob(blob, "test"); \
BlobProto proto; \
CAFFE_ENFORCE(proto.ParseFromString(serialized)); \
EXPECT_EQ(proto.name(), "test"); \
EXPECT_EQ(proto.type(), "Tensor"); \
EXPECT_TRUE(proto.has_tensor()); \
const TensorProto& tensor_proto = proto.tensor(); \
EXPECT_EQ( \
tensor_proto.data_type(), \
TypeMetaToDataType(TypeMeta::Make<TypeParam>())); \
EXPECT_EQ(tensor_proto.field_name##_size(), 6); \
for (int i = 0; i < 6; ++i) { \
EXPECT_EQ(tensor_proto.field_name(i), static_cast<TypeParam>(i)); \
} \
Blob new_blob; \
EXPECT_NO_THROW(DeserializeBlob(serialized, &new_blob)); \
EXPECT_TRUE(BlobIsTensorType(new_blob, CUDA)); \
Tensor new_cpu_tensor(blob.Get<Tensor>(), CPU); \
EXPECT_EQ(new_cpu_tensor.ndim(), 2); \
EXPECT_EQ(new_cpu_tensor.size(0), 2); \
EXPECT_EQ(new_cpu_tensor.size(1), 3); \
for (int i = 0; i < 6; ++i) { \
EXPECT_EQ( \
cpu_tensor.data<TypeParam>()[i], \
new_cpu_tensor.data<TypeParam>()[i]); \
} \
}
TEST_SERIALIZATION_GPU_WITH_TYPE(bool, int32_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(double, double_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(float, float_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(int, int32_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(int8_t, int32_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(int16_t, int32_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(uint8_t, int32_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(uint16_t, int32_data)
TEST_SERIALIZATION_GPU_WITH_TYPE(int64_t, int64_data)
TEST(TensorTest, TensorSerializationMultiDevices) {
Blob blob;
Tensor tensor(CPU);
tensor.Resize(2, 3);
for (int i = 0; i < 6; ++i) {
tensor.mutable_data<float>()[i] = i;
}
for (int gpu_id = 0; gpu_id < NumCudaDevices(); ++gpu_id) {
DeviceGuard guard(gpu_id);
CUDAContext context(gpu_id); // switch to the current gpu
blob.Reset(new Tensor(tensor, CUDA));
string serialized = SerializeBlob(blob, "test");
BlobProto proto;
CAFFE_ENFORCE(proto.ParseFromString(serialized));
EXPECT_EQ(proto.name(), "test");
EXPECT_TRUE(proto.has_tensor());
const TensorProto& tensor_proto = proto.tensor();
EXPECT_EQ(tensor_proto.data_type(), TensorProto::FLOAT);
EXPECT_EQ(tensor_proto.float_data_size(), 6);
for (int i = 0; i < 6; ++i) {
EXPECT_EQ(tensor_proto.float_data(i), i);
}
EXPECT_TRUE(tensor_proto.has_device_detail());
EXPECT_EQ(tensor_proto.device_detail().device_type(), PROTO_CUDA);
EXPECT_EQ(tensor_proto.device_detail().device_id(), gpu_id);
// Test if the restored blob is still of the same device.
blob.Reset();
EXPECT_NO_THROW(DeserializeBlob(serialized, &blob));
EXPECT_TRUE(BlobIsTensorType(blob, CUDA));
EXPECT_EQ(GetGPUIDForPointer(blob.Get<TensorCUDA>().data<float>()),
gpu_id);
// Test if we force the restored blob on a different device, we
// can still get so.
blob.Reset();
proto.mutable_tensor()->mutable_device_detail()->set_device_id(0);
EXPECT_NO_THROW(DeserializeBlob(proto.SerializeAsString(), &blob));
EXPECT_TRUE(BlobIsTensorType(blob, CUDA));
EXPECT_EQ(GetGPUIDForPointer(blob.Get<TensorCUDA>().data<float>()), 0);
}
}
} // namespace
} // namespace caffe2