forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontext_gpu.h
418 lines (364 loc) · 13.5 KB
/
context_gpu.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#ifndef CAFFE2_CORE_CONTEXT_GPU_H_
#define CAFFE2_CORE_CONTEXT_GPU_H_
#include <ctime>
#include <mutex>
#include "caffe2/core/common.h"
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context.h"
#include "caffe2/core/context_base.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/numa.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/types.h"
#include "caffe2/proto/caffe2_pb.h"
// Since we are using the macro CAFFE2_USE_CUDNN, we will need to include this
// file after common.h is included.
#ifdef CAFFE2_USE_CUDNN
#include "caffe2/core/common_cudnn.h"
#endif // CAFFE2_USE_CUDNN
namespace caffe2 {
enum class CudaMemoryPoolType {
NONE = 0,
CUB = 1,
THC = 2,
};
/**
* Gets the current memory pool type used by Caffe2.
*
* The memory pool is set up during caffe2's global initialization time.
*/
CAFFE2_CUDA_API CudaMemoryPoolType GetCudaMemoryPoolType();
/**
* A struct to host thread-local cuda objects.
*
* In Caffe2, each thread has its own non-default cuda stream as well as
* related objects such as cublas and curand handles. This is achieved by
* having the ThreadLocalCUDAObjects wrapper that takes care of allocating
* and deallocating these objects at the thread scope. This class is solely
* used inside CUDAContext and should not be used externally.
*/
class CAFFE2_CUDA_API ThreadLocalCUDAObjects {
friend class CUDAContext;
private:
ThreadLocalCUDAObjects() {
for (int i = 0; i < CAFFE2_COMPILE_TIME_MAX_GPUS; ++i) {
cuda_streams_[i] = vector<cudaStream_t>();
cublas_handles_[i] = vector<cublasHandle_t>();
#ifdef CAFFE2_USE_CUDNN
cudnn_handles_[i] = vector<cudnnHandle_t>();
#endif // CAFFE2_USE_CUDNN
current_stream_id_[i] = 0;
}
}
// Record current stream id for the current thread.
// This is the new API we're trying to migrate use cases to and get rid of
// explicit stream id passing. For now it's invoked in
// CUDAContext::SwitchToDevice
void SetCurrentStreamId(int gpu, int stream_id) {
// TODO: use current device id from thread local instead of passing gpu in
current_stream_id_[gpu] = stream_id;
}
// Uses the logical stream id from the thread local to pick the stream
// We're going to migrate all usages to this case API instead of passing the
// stream id directly
cudaStream_t GetStream(int gpu) {
return GetStream(gpu, current_stream_id_[gpu]);
}
cudaStream_t GetStream(int gpu, int stream_id) {
vector<cudaStream_t>& gpu_streams = cuda_streams_[gpu];
if (gpu_streams.size() <= (unsigned)stream_id) {
gpu_streams.resize(stream_id + 1, nullptr);
}
if (!gpu_streams[stream_id]) {
DeviceGuard guard(gpu);
CUDA_ENFORCE(cudaStreamCreateWithFlags(
&gpu_streams[stream_id], cudaStreamNonBlocking));
}
return gpu_streams[stream_id];
}
// Uses the logical stream id from the thread local to pick the stream
// We're going to migrate all usages to this case API instead of passing the
// stream id directly
cublasHandle_t GetHandle(int gpu) {
return GetHandle(gpu, current_stream_id_[gpu]);
}
cublasHandle_t GetHandle(int gpu, int stream_id) {
DeviceGuard guard(gpu);
vector<cublasHandle_t>& gpu_handles = cublas_handles_[gpu];
if (gpu_handles.size() <= (unsigned)stream_id) {
gpu_handles.resize(stream_id + 1, nullptr);
}
if (!gpu_handles[stream_id]) {
CUBLAS_ENFORCE(cublasCreate(&gpu_handles[stream_id]));
// The default is CUBLAS_POINTER_MODE_HOST. You can override
// it after obtaining the cublas handle, but do that with
// caution.
CUBLAS_ENFORCE(cublasSetPointerMode(
gpu_handles[stream_id], CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(
cublasSetStream(gpu_handles[stream_id], GetStream(gpu, stream_id)));
}
return gpu_handles[stream_id];
}
#ifdef CAFFE2_USE_CUDNN
// Uses the logical stream id from the thread local to pick the stream
// We're going to migrate all usages to this case API instead of passing the
// stream id directly
cudnnHandle_t GetCudnnHandle(int gpu) {
return GetCudnnHandle(gpu, current_stream_id_[gpu]);
}
cudnnHandle_t GetCudnnHandle(int gpu, int stream_id) {
DeviceGuard guard(gpu);
vector<cudnnHandle_t>& gpu_handles = cudnn_handles_[gpu];
if (gpu_handles.size() <= (unsigned)stream_id) {
gpu_handles.resize(stream_id + 1, nullptr);
}
if (!gpu_handles[stream_id]) {
CUDNN_ENFORCE(cudnnCreate(&gpu_handles[stream_id]));
CUDNN_ENFORCE(
cudnnSetStream(gpu_handles[stream_id], GetStream(gpu, stream_id)));
}
return gpu_handles[stream_id];
}
#endif // CAFFE2_USE_CUDNN
~ThreadLocalCUDAObjects() noexcept {
for (int i = 0; i < CAFFE2_COMPILE_TIME_MAX_GPUS; ++i) {
for (auto& handle : cublas_handles_[i]) {
if (handle) {
CUBLAS_CHECK(cublasDestroy(handle));
}
}
for (auto& stream : cuda_streams_[i]) {
if (stream) {
CUDA_CHECK(cudaStreamDestroy(stream));
}
}
#ifdef CAFFE2_USE_CUDNN
for (auto& handle : cudnn_handles_[i]) {
if (handle) {
CUDNN_CHECK(cudnnDestroy(handle));
}
}
#endif // CAFFE2_USE_CUDNN
}
}
vector<cudaStream_t> cuda_streams_[CAFFE2_COMPILE_TIME_MAX_GPUS];
vector<cublasHandle_t> cublas_handles_[CAFFE2_COMPILE_TIME_MAX_GPUS];
#ifdef CAFFE2_USE_CUDNN
vector<cudnnHandle_t> cudnn_handles_[CAFFE2_COMPILE_TIME_MAX_GPUS];
#endif // CAFFE2_USE_CUDNN
int current_stream_id_[CAFFE2_COMPILE_TIME_MAX_GPUS];
};
class CAFFE2_CUDA_API CUDAContext final : public BaseContext {
public:
// The default cuda context constructor.
explicit CUDAContext(const int gpu_id = -1);
explicit CUDAContext(const DeviceOption& option);
explicit CUDAContext(const at::Device& device)
: CUDAContext(DeviceToOption(device)) {}
~CUDAContext() override {
if (curand_generator_) {
CURAND_CHECK(curandDestroyGenerator(curand_generator_));
}
// CUDAContext is used in 2 cases now:
// - long-lived instance inside OperatorBase in which case what happens in
// destructor doesn't really matter
// - short-lived on-the-fly instances that are utilized as CUDAGuard - in
// this case there's only one stream id (passed to SwitchToDevice) and
// it's preferrable to synchronize in the destructor
FinishDeviceComputation();
}
inline void SwitchToDevice(int stream_id) override {
getCudaObjects().SetCurrentStreamId(gpu_id_, stream_id);
CaffeCudaSetDevice(gpu_id_);
}
using BaseContext::SwitchToDevice;
inline void WaitEvent(const Event& ev) override {
ev.Wait(CUDA, this);
}
inline void Record(Event* ev, const char* err_msg = nullptr) const override {
CAFFE_ENFORCE(ev, "Event must not be null.");
ev->Record(CUDA, this, err_msg);
}
// Note on current use cases:
// FinishDeviceComputation must be called on the same cpu thread as
// SwitchToDevice()
void FinishDeviceComputation() override {
cudaStreamSynchronize(getCudaObjects().GetStream(gpu_id_));
cudaError_t error = cudaGetLastError();
if (error != cudaSuccess) {
CAFFE_THROW("Encountered CUDA error: ", cudaGetErrorString(error));
}
}
inline int device_id() const {
return gpu_id_;
}
inline cudaStream_t cuda_stream() const {
return getCudaObjects().GetStream(gpu_id_);
}
static cudaStream_t cuda_stream(int gpu_id, int stream_id) {
return getCudaObjects().GetStream(gpu_id, stream_id);
}
cublasHandle_t cublas_handle() {
return getCudaObjects().GetHandle(gpu_id_);
}
#ifdef CAFFE2_USE_CUDNN
cudnnHandle_t cudnn_handle() {
return getCudaObjects().GetCudnnHandle(gpu_id_);
}
#endif // CAFFE2_USE_CUDNN
curandGenerator_t& curand_generator() {
if (!curand_generator_) {
DeviceGuard guard(gpu_id_);
CURAND_ENFORCE(
curandCreateGenerator(&curand_generator_, CURAND_RNG_PSEUDO_DEFAULT));
CURAND_ENFORCE(
curandSetPseudoRandomGeneratorSeed(curand_generator_, random_seed_));
CHECK_NOTNULL(curand_generator_);
}
CURAND_ENFORCE(curandSetStream(curand_generator_, cuda_stream()));
return curand_generator_;
}
inline static at::DataPtr New(size_t nbytes) {
return GetAllocator(CUDA)->allocate(nbytes);
}
// Get a mutex to lock out cudaMalloc / cudaFree calls when
// NCCL kernels are being launched. Should remove threat of
// deadlocks
static std::mutex& mutex();
// Functions to query memory stats. Only available if flag
// --caffe2_gpu_memory_tracking is enabled.
static std::vector<long> TotalMemoryByGpu();
static std::vector<long> MaxMemoryByGpu();
template <class SrcContext, class DstContext>
inline void CopyBytes(size_t nbytes, const void* src, void* dst) {
CUDA_ENFORCE(cudaMemcpyAsync(
dst,
src,
nbytes,
cudaMemcpyDefault,
getCudaObjects().GetStream(gpu_id_)));
}
void CopyBytesSameDevice(size_t nbytes, const void* src, void* dst) override {
CopyBytes<CUDAContext, CUDAContext>(nbytes, src, dst);
}
void CopyBytesToCPU(size_t nbytes, const void* src, void* dst) override {
CopyBytes<CUDAContext, CPUContext>(nbytes, src, dst);
}
void CopyBytesFromCPU(size_t nbytes, const void* src, void* dst) override {
CopyBytes<CPUContext, CUDAContext>(nbytes, src, dst);
}
template <typename T, class SrcContext, class DstContext>
inline void Copy(int n, const T* src, T* dst) {
CopyBytes<SrcContext, DstContext>(n * sizeof(T),
static_cast<const void*>(src),
static_cast<void*>(dst));
}
template <class SrcContext, class DstContext>
inline void
CopyItems(const TypeMeta& meta, size_t n, const void* src, void* dst) {
CAFFE_ENFORCE(!meta.copy(), "CUDAContext requires fundamental types.");
CopyBytes<SrcContext, DstContext>(n * meta.itemsize(), src, dst);
}
// By default CUDA operators have async device parts
static bool HasAsyncPartDefault() {
return true;
}
static bool SupportsAsyncScheduling() {
return true;
}
static bool IsStreamFree(const DeviceOption& option, int stream_id) {
auto stream = CUDAContext::cuda_stream(option.device_id(), stream_id);
return cudaStreamQuery(stream) == cudaSuccess;
}
at::Device device() const override {
return at::Device(CUDA, gpu_id_);
}
DeviceType device_type() const override {
return CUDA;
}
static constexpr DeviceType GetDeviceType() {
return CUDA;
}
protected:
int gpu_id_;
int random_seed_;
curandGenerator_t curand_generator_{nullptr};
static ThreadLocalCUDAObjects& getCudaObjects();
};
// For the CPU context, we also allow a (probably expensive) function
// to copy the data from a cuda context. Inside the function, we create
// a temporary CUDAContext object to carry out the copy. From the caller's
// side, these functions are synchronous with respect to the host, similar
// to a normal CPUContext::CopyBytes<CPUContext, CPUContext> call.
template<>
inline void CPUContext::CopyBytes<CUDAContext, CPUContext>(
size_t nbytes, const void* src, void* dst) {
CUDAContext context(GetGPUIDForPointer(src));
context.CopyBytes<CUDAContext, CPUContext>(nbytes, src, dst);
}
template<>
inline void CPUContext::CopyBytes<CPUContext, CUDAContext>(
size_t nbytes, const void* src, void* dst) {
CUDAContext context(GetGPUIDForPointer(dst));
context.CopyBytes<CPUContext, CUDAContext>(nbytes, src, dst);
}
/**
* An allocator that does the CPU memory allocation with pinned memory.
*
* This is needed because if we want to do any asynchronous cuda memcpy,
* the underlying CPU memory also needs to be allocated into pinned memory
* space. As a result, whenever Caffe2 is built with GPU and there is
* GPU present during runtime, at global initialization time we will set
* the CPU memory allocator to allocate pinned memory.
*/
struct CAFFE2_CUDA_API PinnedCPUAllocator final : public at::Allocator {
PinnedCPUAllocator() {}
~PinnedCPUAllocator() override {}
at::DataPtr allocate(size_t nbytes) const override {
void* data;
at::DataPtr data_ptr;
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
if (IsNUMAEnabled()) {
data_ptr = baseAllocator_.allocate(nbytes);
data = data_ptr.get();
CAFFE_ENFORCE(data);
CUDA_ENFORCE(cudaHostRegister(data, nbytes, cudaHostRegisterDefault));
} else {
CUDA_ENFORCE(cudaMallocHost(&data, nbytes));
data_ptr = {data, data, &Delete, at::Device(CPU)};
}
memset(data, 0, nbytes);
return data_ptr;
}
at::DeleterFnPtr raw_deleter() const override {
return &Delete;
}
private:
static void Delete(void* data) {
// Caffe2 uses a lazy way to figure out if one is actually going to use GPUs
// or not. If a CUDAContext::New() call is made, inside the CUDAContext
// function we will switch the cpu side allocator to a PinnedCPUAllocator.
// But, if one calls CPUContext::New() before any cuda allocations,
// PinnedCPUAllocator can still delete the corresponding memory.
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
if (IsNUMAEnabled()) {
CUDA_ENFORCE(cudaHostUnregister(data));
DefaultCPUAllocator::Delete(data);
} else {
cudaError_t err = cudaFreeHost(data);
if (err == cudaErrorInvalidValue) {
free(data);
// Calling cudaGetLastError will reset the cuda error.
cudaGetLastError();
} else {
// For all other errors, still do a cuda check.
CUDA_ENFORCE(err);
}
}
}
DefaultCPUAllocator baseAllocator_;
};
using TensorCUDA = Tensor;
} // namespace caffe2
#endif // CAFFE2_CORE_CONTEXT_GPU_H_