forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_simple.h
56 lines (45 loc) · 1.4 KB
/
net_simple.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#ifndef CAFFE2_CORE_NET_SIMPLE_H_
#define CAFFE2_CORE_NET_SIMPLE_H_
#include <vector>
#include "c10/util/Registry.h"
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2_pb.h"
namespace caffe2 {
// This is the very basic structure you need to run a network - all it
// does is simply to run everything in sequence. If you want more fancy control
// such as a DAG-like execution, check out other better net implementations.
class CAFFE2_API SimpleNet : public NetBase {
public:
SimpleNet(const std::shared_ptr<const NetDef>& net_def, Workspace* ws);
bool SupportsAsync() override {
return false;
}
vector<float> TEST_Benchmark(
const int warmup_runs,
const int main_runs,
const bool run_individual) override;
/*
* This returns a list of pointers to objects stored in unique_ptrs.
* Used by Observers.
*
* Think carefully before using.
*/
vector<OperatorBase*> GetOperators() const override {
vector<OperatorBase*> op_list;
for (auto& op : operators_) {
op_list.push_back(op.get());
}
return op_list;
}
protected:
bool Run() override;
bool RunAsync() override;
vector<unique_ptr<OperatorBase>> operators_;
C10_DISABLE_COPY_AND_ASSIGN(SimpleNet);
};
} // namespace caffe2
#endif // CAFFE2_CORE_NET_SIMPLE_H_