forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_workers_test.py
195 lines (159 loc) · 6.47 KB
/
data_workers_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import unittest
import time
from caffe2.python import workspace, model_helper
from caffe2.python import timeout_guard
import caffe2.python.data_workers as data_workers
def dummy_fetcher(fetcher_id, batch_size):
# Create random amount of values
n = np.random.randint(64) + 1
data = np.zeros((n, 3))
labels = []
for j in range(n):
data[j, :] *= (j + fetcher_id)
labels.append(data[j, 0])
return [np.array(data), np.array(labels)]
def dummy_fetcher_rnn(fetcher_id, batch_size):
# Hardcoding some input blobs
T = 20
N = batch_size
D = 33
data = np.random.rand(T, N, D)
label = np.random.randint(N, size=(T, N))
seq_lengths = np.random.randint(N, size=(N))
return [data, label, seq_lengths]
class DataWorkersTest(unittest.TestCase):
def testNonParallelModel(self):
workspace.ResetWorkspace()
model = model_helper.ModelHelper(name="test")
old_seq_id = data_workers.global_coordinator._fetcher_id_seq
coordinator = data_workers.init_data_input_workers(
model,
["data", "label"],
dummy_fetcher,
32,
2,
input_source_name="unittest"
)
new_seq_id = data_workers.global_coordinator._fetcher_id_seq
self.assertEqual(new_seq_id, old_seq_id + 2)
coordinator.start()
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
for _i in range(500):
with timeout_guard.CompleteInTimeOrDie(5):
workspace.RunNet(model.net.Proto().name)
data = workspace.FetchBlob("data")
labels = workspace.FetchBlob("label")
self.assertEqual(data.shape[0], labels.shape[0])
self.assertEqual(data.shape[0], 32)
for j in range(32):
self.assertEqual(labels[j], data[j, 0])
self.assertEqual(labels[j], data[j, 1])
self.assertEqual(labels[j], data[j, 2])
coordinator.stop_coordinator("unittest")
self.assertEqual(coordinator._coordinators, [])
def testRNNInput(self):
workspace.ResetWorkspace()
model = model_helper.ModelHelper(name="rnn_test")
old_seq_id = data_workers.global_coordinator._fetcher_id_seq
coordinator = data_workers.init_data_input_workers(
model,
["data1", "label1", "seq_lengths1"],
dummy_fetcher_rnn,
32,
2,
dont_rebatch=False,
batch_columns=[1, 1, 0],
)
new_seq_id = data_workers.global_coordinator._fetcher_id_seq
self.assertEqual(new_seq_id, old_seq_id + 2)
coordinator.start()
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
while coordinator._coordinators[0]._state._inputs < 100:
time.sleep(0.01)
# Run a couple of rounds
workspace.RunNet(model.net.Proto().name)
workspace.RunNet(model.net.Proto().name)
# Wait for the enqueue thread to get blocked
time.sleep(0.2)
# We don't dequeue on caffe2 side (as we don't run the net)
# so the enqueue thread should be blocked.
# Let's now shutdown and see it succeeds.
self.assertTrue(coordinator.stop())
def testInputOrder(self):
#
# Create two models (train and validation) with same input blobs
# names and ensure that both will get the data in correct order
#
workspace.ResetWorkspace()
self.counters = {0: 0, 1: 1}
def dummy_fetcher_rnn_ordered1(fetcher_id, batch_size):
# Hardcoding some input blobs
T = 20
N = batch_size
D = 33
data = np.zeros((T, N, D))
data[0][0][0] = self.counters[fetcher_id]
label = np.random.randint(N, size=(T, N))
label[0][0] = self.counters[fetcher_id]
seq_lengths = np.random.randint(N, size=(N))
seq_lengths[0] = self.counters[fetcher_id]
self.counters[fetcher_id] += 1
return [data, label, seq_lengths]
workspace.ResetWorkspace()
model = model_helper.ModelHelper(name="rnn_test_order")
coordinator = data_workers.init_data_input_workers(
model,
input_blob_names=["data2", "label2", "seq_lengths2"],
fetch_fun=dummy_fetcher_rnn_ordered1,
batch_size=32,
max_buffered_batches=1000,
num_worker_threads=1,
dont_rebatch=True,
input_source_name='train'
)
coordinator.start()
val_model = model_helper.ModelHelper(name="rnn_test_order_val")
coordinator1 = data_workers.init_data_input_workers(
val_model,
input_blob_names=["data2", "label2", "seq_lengths2"],
fetch_fun=dummy_fetcher_rnn_ordered1,
batch_size=32,
max_buffered_batches=1000,
num_worker_threads=1,
dont_rebatch=True,
input_source_name='val'
)
coordinator1.start()
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
workspace.CreateNet(val_model.net)
while coordinator._coordinators[0]._state._inputs < 900:
time.sleep(0.01)
with timeout_guard.CompleteInTimeOrDie(5):
for m in (model, val_model):
print(m.net.Proto().name)
workspace.RunNet(m.net.Proto().name)
last_data = workspace.FetchBlob('data2')[0][0][0]
last_lab = workspace.FetchBlob('label2')[0][0]
last_seq = workspace.FetchBlob('seq_lengths2')[0]
# Run few rounds
for _i in range(10):
workspace.RunNet(m.net.Proto().name)
data = workspace.FetchBlob('data2')[0][0][0]
lab = workspace.FetchBlob('label2')[0][0]
seq = workspace.FetchBlob('seq_lengths2')[0]
self.assertEqual(data, last_data + 1)
self.assertEqual(lab, last_lab + 1)
self.assertEqual(seq, last_seq + 1)
last_data = data
last_lab = lab
last_seq = seq
time.sleep(0.2)
self.assertTrue(coordinator.stop())