forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_jit.py
9654 lines (7898 loc) · 334 KB
/
test_jit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division
import torch
import torch.jit
import torch.nn as nn
import torch.nn.functional as F
from contextlib import contextmanager
from itertools import product, chain
import torch.jit.frontend
from torch.autograd import Variable, Function
from torch.autograd.function import traceable
from torch.testing import assert_allclose
from torch.onnx import OperatorExportTypes
from torch._six import inf, PY2
from common_utils import (TestCase, run_tests, IS_WINDOWS, TEST_WITH_UBSAN,
skipIfRocm, suppress_warnings, load_tests, IS_SANDCASTLE)
from textwrap import dedent
import os
import io
import sys
import unittest
import inspect
import textwrap
import numpy as np
import tempfile
import shutil
import warnings
from common_methods_invocations import method_tests as autograd_method_tests
from common_methods_invocations import create_input, unpack_variables, \
exclude_tensor_method, non_differentiable, EXCLUDE_GRADCHECK, EXCLUDE_FUNCTIONAL
from copy import deepcopy
import random
from torch.jit.frontend import NotSupportedError
from torch.jit import BatchTensor
# For testing truediv in python 2
from test_module.future_div import div_int_future, div_float_future
from test_module.no_future_div import div_int_nofuture, div_float_nofuture
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
RUN_CUDA = torch.cuda.is_available()
RUN_CUDA_HALF = RUN_CUDA
if torch.cuda.is_available():
CUDA_VERSION = torch._C._cuda_getCompiledVersion()
for d in range(torch.cuda.device_count()):
major = torch.cuda.get_device_capability(d)[0]
if (CUDA_VERSION < 8000 and major >= 6) or (CUDA_VERSION < 9000 and major >= 7):
RUN_CUDA = False
if (CUDA_VERSION < 9000 or major < 6):
RUN_CUDA_HALF = False
RUN_CUDA_MULTI_GPU = RUN_CUDA and torch.cuda.device_count() > 1
PY35 = sys.version_info >= (3, 5)
WINDOWS = sys.platform == 'win32'
def LSTMCellF(input, hx, cx, *params):
return LSTMCell(input, (hx, cx), *params)
def LSTMCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None):
hx, cx = hidden
gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh)
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def LSTMCellC(*args, **kwargs):
hy, cy = LSTMCellF(*args, **kwargs)
return torch.cat((hy, cy))
def LSTMCellS(x, hx, cx, w_ih, w_hh, b_ih, b_hh):
gates = x.mm(w_ih.t()) + hx.mm(w_hh.t()) + b_ih + b_hh
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
# Code reference: https://github.com/pytorch/translate/blob/master/pytorch_translate/rnn_cell.py#L27:44
def MiLSTMCell(x, hx, cx, w_ih, w_hh, alpha, beta_i, beta_h, bias):
Wx = x.mm(w_ih.t())
Uz = hx.mm(w_hh.t())
# Section 2.1 in https://arxiv.org/pdf/1606.06630.pdf
gates = alpha * Wx * Uz + beta_i * Wx + beta_h * Uz + bias
# Same as LSTMCell after this point
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = ingate.sigmoid()
forgetgate = forgetgate.sigmoid()
cellgate = cellgate.tanh()
outgate = outgate.sigmoid()
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * cy.tanh()
return hy, cy
def canonical(graph):
return str(torch._C._jit_pass_canonicalize(graph))
def get_lstm_inputs(device, training=False):
input = torch.randn(3, 10, dtype=torch.float, device=device, requires_grad=training)
hx = torch.randn(3, 20, dtype=torch.float, device=device, requires_grad=training)
cx = torch.randn(3, 20, dtype=torch.float, device=device, requires_grad=training)
module = nn.LSTMCell(10, 20).to(device, torch.float) # Just to allocate weights with correct sizes
if training:
params = tuple(module.parameters())
else:
params = tuple(p.requires_grad_(False) for p in module.parameters())
return (input, hx, cx) + params
def get_milstm_inputs(device, training=False):
minibatch = 3
input_size = 10
hidden_size = 20
x = torch.randn(minibatch, input_size, device=device, dtype=torch.float)
hx = torch.randn(minibatch, hidden_size, device=device, dtype=torch.float)
cx = torch.randn(minibatch, hidden_size, device=device, dtype=torch.float)
ih = torch.randn(4 * hidden_size, input_size, device=device, dtype=torch.float, requires_grad=training)
hh = torch.randn(4 * hidden_size, hidden_size, device=device, dtype=torch.float, requires_grad=training)
alpha = torch.randn(4 * hidden_size, dtype=torch.float, device=device, requires_grad=training)
ibeta = torch.randn(4 * hidden_size, dtype=torch.float, device=device, requires_grad=training)
hbeta = torch.randn(4 * hidden_size, dtype=torch.float, device=device, requires_grad=training)
bias = torch.randn(4 * hidden_size, dtype=torch.float, device=device, requires_grad=training)
return x, hx, cx, ih, hh, alpha, ibeta, hbeta, bias
def get_fn(file_name, script_path):
import importlib.util
spec = importlib.util.spec_from_file_location(file_name, script_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
fn = module.fn
return fn
def get_execution_plan(graph_executor_state):
execution_plans = list(graph_executor_state.execution_plans.values())
num_plans = len(execution_plans)
if num_plans != 1:
raise RuntimeError('This test assumes this GraphExecutor should '
'only have one execution plan, got: {}'.format(num_plans))
return execution_plans[0]
def get_grad_executor(plan_state):
if len(list(plan_state.graph.nodes())) != 1:
raise RuntimeError("Can't get a grad_executor for a non-differentiable graph")
grad_executors = list(plan_state.code.grad_executors())
return grad_executors[0]
def backward_graph(script_module):
if not isinstance(script_module, torch.jit.ScriptModule):
raise RuntimeError('Expected ScriptModule')
ge_state = script_module.get_debug_state()
fwd_plan = get_execution_plan(ge_state)
grad_executor = get_grad_executor(fwd_plan)
bwd_plan = get_execution_plan(grad_executor.get_debug_state())
# Running JIT passes requires that we own the graph (with a shared_ptr).
# The debug state struct does not own its graph so we make a copy of it.
return bwd_plan.graph.copy()
# make it easy to quicky define/trace a function for these tests
def _trace(*args, **kwargs):
def wrapper(func):
return torch.jit.trace(func, args, **kwargs)
return wrapper
def enable_cpu_fuser(fn):
def wrapper(*args, **kwargs):
torch._C._jit_override_can_fuse_on_cpu(True)
try:
fn(*args, **kwargs)
except Exception:
torch._C._jit_override_can_fuse_on_cpu(False)
raise
return wrapper
class JitTestCase(TestCase):
_do_cuda_memory_leak_check = True
_restored_warnings = False
def setUp(self):
# unittest overrides all warning filters and forces all of them to show up
# after we install our own to silence those coming from inside PyTorch.
# This will ensure that our filter still takes precedence.
if not JitTestCase._restored_warnings:
torch.jit.TracerWarning.ignore_lib_warnings()
JitTestCase._restored_warnings = True
def getExportImportCopy(self, m):
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually
f = tempfile.NamedTemporaryFile(delete=False)
try:
f.close()
m.save(f.name)
imported = torch.jit.load(f.name)
finally:
os.unlink(f.name)
buffer = io.BytesIO()
torch.jit.save(imported, buffer)
buffer.seek(0)
return torch.jit.load(buffer)
def assertGraphContains(self, graph, kind):
self.assertTrue(any(n.kind() == kind for n in graph.nodes()))
def assertExpectedONNXGraph(self, trace, *args, **kwargs):
torch.onnx._optimize_trace(trace, operator_export_type=OperatorExportTypes.ONNX)
self.assertExpectedGraph(trace, *args, **kwargs)
def assertExpectedGraph(self, trace, *args, **kwargs):
if isinstance(trace, torch._C.Graph):
graph = trace
else:
graph = trace.graph()
torch._C._jit_pass_lint(graph)
torch._C._jit_pass_dce(graph)
torch._C._jit_pass_lint(graph)
graph = torch._C._jit_pass_canonicalize(graph)
torch._C._jit_pass_lint(graph)
self.assertExpected(str(graph), *args, **kwargs)
def run_pass(self, name, trace):
if isinstance(trace, torch._C.Graph):
graph = trace
set_graph = False
else:
set_graph = True
graph = trace.graph()
torch._C._jit_pass_lint(graph)
result = getattr(torch._C, '_jit_pass_' + name)(graph)
if result is not None:
graph = result
torch._C._jit_pass_lint(graph)
if set_graph:
trace.set_graph(graph)
return graph
def checkTrace(self, func, reference_tensors, input_tensors=None,
optimize=True, drop=None, allow_unused=False, verbose=False,
inputs_require_grads=True, check_tolerance=1e-5, export_import=True):
# TODO: check gradients for parameters, not just inputs
def allSum(vs):
# drop allows us to remove some values from ever being used
# to test unused outputs
if drop is not None:
vs = vs[:-drop]
# we don't want all the grad for all the outputs to be the same
# so we multiply each by a constant
return sum([(i + 1) * v.sum() for i, v in enumerate(vs) if v is not None])
if input_tensors is None:
input_tensors = reference_tensors
nograd_inputs = reference_tensors
if inputs_require_grads:
recording_inputs = [t.clone().requires_grad_() for t in reference_tensors]
else:
recording_inputs = reference_tensors
if isinstance(func, torch._C.Graph):
ge = torch._C.GraphExecutor(func, optimize)
else:
ge = torch.jit.trace(func, input_tensors, optimize=optimize, check_tolerance=check_tolerance)
if export_import:
ge = self.getExportImportCopy(ge)
if verbose:
print(ge.graph)
# test no gradients case
outputs = func(*nograd_inputs)
outputs_ge = ge(*nograd_inputs)
self.assertEqual(outputs, outputs_ge)
# test single grad case
outputs = func(*recording_inputs)
if inputs_require_grads:
grads = torch.autograd.grad(allSum(outputs), recording_inputs,
allow_unused=allow_unused)
outputs_ge = ge(*recording_inputs)
if inputs_require_grads:
grads_ge = torch.autograd.grad(allSum(outputs_ge), recording_inputs,
allow_unused=allow_unused)
self.assertEqual(outputs, outputs_ge)
if inputs_require_grads:
self.assertEqual(grads, grads_ge)
# test the grad grad case
outputs = func(*recording_inputs)
l1 = allSum(outputs)
if inputs_require_grads:
grads = torch.autograd.grad(l1, recording_inputs, create_graph=True,
allow_unused=allow_unused)
if inputs_require_grads:
l2 = (allSum(grads) * l1)
grads2 = torch.autograd.grad(l2, recording_inputs, allow_unused=allow_unused)
if inputs_require_grads:
recording_inputs = [Variable(t, requires_grad=True)
for t in reference_tensors]
outputs_ge = ge(*recording_inputs)
l1_ge = allSum(outputs_ge)
if inputs_require_grads:
grads_ge = torch.autograd.grad(
l1_ge, recording_inputs, create_graph=True, allow_unused=allow_unused)
if inputs_require_grads:
l2_ge = (allSum(grads_ge) * l1_ge)
grads2_ge = torch.autograd.grad(l2_ge, recording_inputs, allow_unused=allow_unused)
self.assertEqual(outputs, outputs_ge)
if inputs_require_grads:
self.assertEqual(grads, grads_ge)
for g2, g2_ge in zip(grads2, grads2_ge):
if g2 is None and g2_ge is None:
continue
self.assertTrue(torch.allclose(g2, g2_ge, atol=7e-4, rtol=1e-4))
return ge
def assertAllFused(self, graph):
if [n.kind() for n in graph.nodes()] == ['prim::DifferentiableGraph']:
graph = next(graph.nodes()).g('Subgraph')
self.assertTrue(all(node.kind() in {'prim::Constant', 'prim::FusionGroup'} for node in graph.nodes()),
'got {}'.format(graph))
self.assertTrue([node.kind() for node in graph.nodes()].count('prim::FusionGroup') == 1)
def assertExportImport(self, trace, inputs):
graph = trace if isinstance(trace, torch._C.Graph) else trace.graph()
m = torch.jit.ScriptModule()
m._create_method_from_graph("forward", graph)
self.assertExportImportModule(m, inputs)
def assertExportImportModule(self, m, inputs):
m_import = self.getExportImportCopy(m)
self.assertEqual(m.forward(*inputs), m_import.forward(*inputs))
class TestJit(JitTestCase):
def test_simple(self):
x = torch.tensor([0.4], requires_grad=True)
y = torch.tensor([0.7], requires_grad=True)
def f(x, y):
return torch.sigmoid(torch.tanh(x * (x + y)))
trace, z = torch.jit.get_trace_graph(f, (x, y))
self.assertExpectedGraph(trace)
self.assertExportImport(trace, (x, y))
def test_typeas_trace_check(self):
a = torch.tensor([0.4], requires_grad=True)
b = torch.tensor([0.7], requires_grad=True)
def f(x, y):
return x.type_as(y)
trace = torch.jit.trace(f, (a, b))
def test_peephole(self):
a = torch.tensor([0.4])
b = torch.tensor([0.7])
c = torch.tensor([0], dtype=torch.int32)
def f(x, y):
return x.type_as(y)
tf = torch.jit.trace(f, (a, b))
self.run_pass('peephole', tf.graph)
self.assertExpectedGraph(tf.graph)
tf2 = torch.jit.trace(f, (a, c))
s = str(tf2.graph)
self.run_pass('peephole', tf2.graph)
self.assertEqual(s, str(s))
def test_peephole_dynamic(self):
def f(x, y):
return x.type_as(y)
fn = torch.jit.script(f)
s = str(fn.graph)
torch._C._jit_pass_peephole(fn.graph)
self.assertEqual(s, str(fn.graph))
@unittest.skipIf(not RUN_CUDA, "cpp tests require CUDA")
def test_peephole_cuda(self):
a = torch.tensor([0.4], device='cpu')
b = torch.tensor([0.7], device='cuda')
c = torch.tensor([0.7], device='cuda')
def f(x, y):
return x.type_as(y)
trace = torch.jit.trace(f, (a, c))
s = str(trace.graph)
self.run_pass('peephole', trace.graph)
self.assertEqual(s, str(trace.graph))
trace = torch.jit.trace(f, (b, c))
self.run_pass('peephole', trace.graph)
self.assertExpectedGraph(trace.graph, subname="same_device")
def test_index(self):
x = torch.tensor([0.4], requires_grad=True)
y = torch.tensor([0], dtype=torch.int64)
def fn(x, y):
return x[y]
fn_traced = torch.jit.trace(fn, (x, y,))
self.assertEqual(fn(x, y), fn_traced(x, y))
def test_disabled(self):
torch.jit._enabled = False
try:
def f(x, y):
return x + y
self.assertIs(torch.jit.trace(f, (torch.randn(2, 2), torch.randn(2, 2))), f)
self.assertIs(torch.jit.script(f), f)
class MyModule(torch.jit.ScriptModule):
@torch.jit.script_method
def method(self, x):
return x
# XXX: Unfortunately ScriptModule won't simply become Module now,
# because that requires disabling the JIT at startup time, which
# we can't do in here.
# We need to or those two conditions to make it work with all versions of Python
self.assertTrue(inspect.ismethod(MyModule.method) or inspect.isfunction(MyModule.method))
finally:
torch.jit._enabled = True
def test_train_eval(self):
class Sub(nn.Module):
def forward(self, input):
if self.training:
return input
else:
return -input
class MyModule(torch.jit.ScriptModule):
def __init__(self):
super(MyModule, self).__init__()
self.sub = Sub()
@torch.jit.script_method
def forward(self, input):
return self.sub(input) + 1
m = MyModule()
input = torch.rand(3, 4)
self.assertEqual(input + 1, m(input))
m.eval()
self.assertEqual(-input + 1, m(input))
def test_train_eval_const(self):
class MyModule(torch.jit.ScriptModule):
__constants__ = ['training']
def __init__(self):
super(MyModule, self).__init__()
# TODO: it is illegal to try to call
# eval/train because training has already
# been set. Consider allowing
# constants to be mutable until the end of __init__
@torch.jit.script_method
def forward(self, input):
if self.training:
x = 2 * input
else:
x = -input
return x + 1
m = MyModule()
input = torch.rand(3, 4)
self.assertEqual(2 * input + 1, m(input))
def test_diff_subgraph_clones_constants(self):
@torch.jit.script
def f(x, y):
return x + x + y + x + y + x + y + x + y + x
def count_constants(graph):
return sum(node.kind() == 'prim::Constant' for node in graph.nodes())
graph = f.graph.copy()
self.run_pass('cse', graph)
self.run_pass('create_autodiff_subgraphs', graph)
nodes = list(graph.nodes())
self.assertEqual(count_constants(graph), 1)
self.assertEqual(count_constants(nodes[1].g('Subgraph')), 1)
# Backwards tracing was broken for indexing by a constant,
# because it's internally implemented using as_strided,
# and we attempted to trace its derivative (which is not
# currently supported.) It currently works because
# slice() is now not marked as traceable.
def test_index_constant(self):
x = torch.tensor([0.4], requires_grad=True)
def fn(x):
return x[0]
def run(f):
y = f(x)
grad = torch.autograd.grad(y, x)[0].clone()
return y, grad
traced_fn = torch.jit.trace(fn, torch.ones(1))
self.assertEqual(run(fn), run(traced_fn))
def test_scopes(self):
x = torch.tensor([0.4], requires_grad=True)
y = torch.tensor([0.7], requires_grad=True)
def f(x, y):
out = x + y
with torch.jit.scope('Foo'):
out = x * out
with torch.jit.scope('Bar'):
out = torch.tanh(out)
out = torch.sigmoid(out)
return out
trace, z = torch.jit.get_trace_graph(f, (x, y))
self.assertExpectedGraph(trace)
self.assertExportImport(trace, (x, y))
def test_scopes_intermediate_node(self):
class Net(nn.Module):
def forward(self, x):
return F.log_softmax(x, dim=0)
net = Net()
t = torch.ones(2, requires_grad=True)
trace, _ = torch.jit.get_trace_graph(net, (t,))
self.assertExportImport(trace, (t,))
self.assertExpectedONNXGraph(trace)
def test_scopes_identity_node(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
def forward(self, x):
x = self.features(x)
return x
model = Net()
t = torch.ones(1, 3, 227, 227, requires_grad=True)
with torch.onnx.set_training(model, False):
trace, _ = torch.jit.get_trace_graph(model, (t,))
self.assertExportImport(trace, (t,) + tuple(model.parameters()))
self.assertExpectedONNXGraph(trace)
@unittest.skipIf(not IS_WINDOWS, "Testing Fuse skipped on windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_windows_fuse(self):
def scaleshift(x, scale, shift):
return x * scale + shift
graph = torch.jit.script(scaleshift).graph
inputs = [
torch.randn(4, 4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
]
ge = self.checkTrace(scaleshift, inputs)
fuse_graph = ge.graph_for(*inputs)
def run_graph(graph, inputs):
m = torch.jit.ScriptModule()
m._create_method_from_graph("forward", graph)
return m(*inputs)
self.assertEqual(run_graph(graph, inputs), run_graph(fuse_graph, inputs))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_broadcast_fusion_cuda(self):
def scaleshift(x, scale, shift):
return x * scale + shift
inputs = [
torch.randn(4, 4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
]
ge = self.checkTrace(scaleshift, inputs)
self.assertExpectedGraph(ge.graph_for(*inputs))
# TODO: Fuser doesn't work at all when inputs require grad. Fix that
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_lstm_fusion_cuda(self):
inputs = get_lstm_inputs('cuda')
ge = self.checkTrace(LSTMCellF, inputs)
self.assertExpectedGraph(ge.graph_for(*inputs))
@unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle")
@unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/8746")
@enable_cpu_fuser
def test_lstm_fusion_cpu(self):
inputs = get_lstm_inputs('cpu')
try:
ge = self.checkTrace(LSTMCellF, inputs)
self.assertExpectedGraph(ge.graph_for(*inputs))
except RuntimeError as e:
if 'Failed to compile' in e.args[0]:
warnings.warn('CPU fuser test has failed! This is not a hard failure, '
'because the kernels sometimes trigger bugs in compilers '
'(most notably GCC 7.2).')
raise unittest.SkipTest('Failed to compile')
else:
raise
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_lstm_fusion_concat_cuda(self):
inputs = get_lstm_inputs('cuda')
ge = self.checkTrace(LSTMCellC, inputs)
self.assertExpectedGraph(ge.graph_for(*inputs))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_concat_fusion_cuda(self):
hx = torch.randn(3, 20, dtype=torch.float, device='cuda')
cx = torch.randn(3, 20, dtype=torch.float, device='cuda')
def foo(hx, cx):
return torch.cat((hx + cx, hx * cx))
ge = self.checkTrace(foo, (hx, cx))
self.assertExpectedGraph(ge.graph_for(hx, cx))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_concat_fusion_invariant_cuda(self):
# Invariant: the output of prim::FusedConcat may
# not be an input to any node inside the FusionGroup.
def fn(x, y, z):
x1 = x + y
y1 = x - y
w = torch.cat([x1, y1])
return w + z
x = torch.randn(2, 2, dtype=torch.float, device='cuda')
y = torch.randn(2, 2, dtype=torch.float, device='cuda')
z = torch.randn(4, 2, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn, (x, y, z))
self.assertExpectedGraph(ge.graph_for(x, y, z))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_fusion_distribute_cuda(self):
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
self.assertExpectedGraph(ge.graph_for(x, y))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_fusion_rand_cuda(self):
class M(torch.jit.ScriptModule):
__constants__ = ['d']
def __init__(self):
self.d = torch.device('cuda')
@torch.jit.script_method
def create(self, x):
return x * x + x + torch.rand_like(x)
x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda')
m = M()
out1 = m.create(x)
out2 = m.create(x)
self.assertNotEqual(out1, out2)
self.assertTrue(torch.all(out1 >= 0))
self.assertTrue(torch.all(out1 < 1))
self.assertTrue(torch.all(out2 >= 0))
self.assertTrue(torch.all(out2 < 1))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_fusion_arg_configurations_cuda(self):
# A smoke test to make sure we won't use the same kernel for contiguous
# and non-contiguous arguments.
# TODO: add optionally enabled debug counters to the fuser to verify
# that we really can tell the difference between configurations
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
traced_f = torch.jit.trace(f, (x, y,))
self.assertEqual(traced_f(x.t().contiguous(), y), traced_f(x.t(), y))
@staticmethod
def fn_test_comparison_gt_lt(x, y):
mask = (x > 0).type_as(x)
z = x * mask + y
mask = (x < 0).type_as(x)
z = z * mask + y
return z
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_comparison_gt_lt_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_comparison_ge_le_cuda(self):
def f(x, y):
mask = (x >= 0).type_as(x)
z = x * mask + y
mask = (x <= 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_comparison_eq_ne(self):
def f(x, y):
mask = (x == 0).type_as(x)
z = x * mask + y
mask = (x != 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@staticmethod
def fn_test_relu(x, y):
return F.relu(x + .5 * y)
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_relu_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_relu, (x, y))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_small_constant_cuda(self):
def fn_test_small_constant(x, y):
return (1e-8 * x + 5e-9 * y) * 1e8
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn_test_small_constant, (x, y))
@staticmethod
def fn_test_exp(x, y):
return (x + .5 * y).exp()
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@skipIfRocm
def test_exp_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_exp, (x, y))
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_HALF, "no half support")
def test_cuda_half(self):
x = torch.randn(4, 4, dtype=torch.half, device='cuda')
y = torch.randn(4, 4, dtype=torch.half, device='cuda')
funcs = [
self.fn_test_comparison_gt_lt,
self.fn_test_relu,
self.fn_test_exp
]
# Note: Non fused inputs must be float to prevent loss of precision
inputs = (x.float(), y.float())
fusion_inputs = (x, y)
for fn in funcs:
local_inputs = [t.clone().requires_grad_() for t in inputs]
local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs]
# Verifies outputs
fusion = torch.jit.trace(fn, local_fusion_inputs, check_trace=False, optimize=True)
outputs = fn(*local_inputs)
fusion_outputs = fusion(*local_fusion_inputs)
outputs_half = [t.half() for t in outputs]
self.assertEqual(outputs_half, fusion_outputs)
# Verifies gradients
for output, fusion_output in zip(outputs_half, fusion_outputs):
grads = torch.autograd.grad(
output.float().sum(), local_inputs, allow_unused=True, retain_graph=True)
fusion_grads = torch.autograd.grad(
fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True)
grads_half = [t.half() for t in grads]
self.assertEqual(grads_half, fusion_grads)
# TODO: adapt this test to check that GraphExecutor treats them differently
@unittest.skip("Need to be adjusted to Graph Executor")
def test_arg_configurations(self):
"""Different arg configurations should trigger different traces"""
x = Variable(torch.FloatTensor(4, 4).uniform_())
x_double = Variable(x.data.double())
x_grad = Variable(x.data.clone(), requires_grad=True)
y = Variable(torch.randn(4))
configurations = [
(x,),
(x_double,),
(x_grad,),
(y,),
([x, x],),
([x, y],),
]
if torch.cuda.is_available():
x_cuda = Variable(x.data.cuda())
configurations += [
(x_cuda,),
([x, x_cuda],),
([x_cuda, x],),
([[x_cuda, x]],),
]
if torch.cuda.device_count() > 1:
x_cuda_1 = Variable(x.data.cuda(1))
configurations += [
(x_cuda_1,),
([x_cuda, x_cuda_1],),
]
@torch.jit.compile(nderivs=0)
def fn(*args):
in_vars, _ = torch._C._jit_flatten(args)
return in_vars[0] + 1
for i, config in enumerate(configurations):
self.assertFalse(fn.has_trace_for(*config))
fn(*config)
self.assertTrue(fn.has_trace_for(*config))
for unk_config in configurations[i + 1:]:
self.assertFalse(fn.has_trace_for(*unk_config))
self.assertEqual(fn.hits, 0)
def test_cse(self):
x = torch.tensor([0.4, 0.3], requires_grad=True)
y = torch.tensor([0.7, 0.5], requires_grad=True)
def fn(x, y):
w = (x + y) * (x + y) * (x + y)
t = torch.tanh(w) + torch.tanh(w)
z = (x + y) * (x + y) * (x + y) + t
return z
trace, _ = torch.jit.get_trace_graph(fn, (x, y))
self.run_pass('cse', trace)
self.assertExpectedGraph(trace)
self.assertExportImport(trace, (x, y))
def test_recursive_cse(self):
x = torch.tensor([0.1])
y = torch.tensor([0.2])
def fn(x, y):
z = x
if bool(x + y > x):
z = x + y
return z
graph = torch.jit.script(fn).graph
self.run_pass('cse', graph)
self.assertExpectedGraph(graph)
def test_scalar(self):
# NB: must not require grad; if it requires grad, it's always a Tensor
x = torch.tensor(2.)
y = torch.tensor(3.)
def fn(x, y):
return x - y
trace, _ = torch.jit.get_trace_graph(fn, (x, y))
def test_shape_analysis_broadcast(self):
def broadcast(a, b):
return a + b
x = torch.randn(3, 1, 5, requires_grad=True)
y = torch.randn(4, 1, 8, 5, requires_grad=True)
graph = torch.jit.script(broadcast).graph
torch._C._jit_pass_complete_shape_analysis(graph, (x, y), False)
self.assertExpectedGraph(graph)
@unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows")
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
@skipIfRocm
def test_fuse_last_device_cuda(self):
device = 'cuda:' + str(1)
x = torch.tensor([0.4], dtype=torch.float, device=device)
y = torch.tensor([0.7], dtype=torch.float, device=device)
def doit(x, y):
return torch.sigmoid(torch.tanh(x * (x + y) + x))