forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautodiff.cpp
673 lines (582 loc) · 29.4 KB
/
autodiff.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
#include "torch/csrc/jit/autodiff.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
#include "torch/csrc/jit/symbolic_variable.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/utils/functional.h"
#include <torch/csrc/jit/assertions.h>
#include <algorithm>
#include <memory>
namespace torch { namespace jit {
using value_map = std::unordered_map<Value*, Value*>;
using value_set = std::unordered_set<Value*>;
void wrapDim(int64_t & dim, const std::vector<int64_t> & sizes) {
if (dim < 0) {
dim += sizes.size();
}
}
bool isDifferentiable(Node * n) {
// TODO: scalar-tensor ops should be canonicalized
static OperatorSet differentiable_ops = {
"aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::mul(Tensor self, Tensor other) -> Tensor",
"aten::mul(Tensor self, Scalar other) -> Tensor",
"aten::div(Tensor self, Tensor other) -> Tensor",
"aten::div(Tensor self, Scalar other) -> Tensor",
"aten::sigmoid(Tensor self) -> Tensor",
"aten::tanh(Tensor self) -> Tensor",
"aten::relu(Tensor self) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::t(Tensor self) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor",
"aten::type_as(Tensor self, Tensor other) -> Tensor",
"aten::unsqueeze(Tensor self, int dim) -> Tensor",
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor",
"aten::mm(Tensor self, Tensor mat2) -> Tensor",
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor",
"aten::abs(Tensor self) -> Tensor",
"aten::acos(Tensor self) -> Tensor",
"aten::asin(Tensor self) -> Tensor",
"aten::atan(Tensor self) -> Tensor",
"aten::ceil(Tensor self) -> Tensor",
"aten::cos(Tensor self) -> Tensor",
"aten::cosh(Tensor self) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::expm1(Tensor self) -> Tensor",
"aten::floor(Tensor self) -> Tensor",
"aten::fmod(Tensor self, Scalar other) -> Tensor",
"aten::frac(Tensor self) -> Tensor",
"aten::log(Tensor self) -> Tensor",
"aten::log10(Tensor self) -> Tensor",
"aten::log1p(Tensor self) -> Tensor",
"aten::log2(Tensor self) -> Tensor",
"aten::reciprocal(Tensor self) -> Tensor",
"aten::remainder(Tensor self, Scalar other) -> Tensor",
"aten::round(Tensor self) -> Tensor",
"aten::rsqrt(Tensor self) -> Tensor",
"aten::sin(Tensor self) -> Tensor",
"aten::sinh(Tensor self) -> Tensor",
"aten::tan(Tensor self) -> Tensor",
"aten::trunc(Tensor self) -> Tensor",
};
// TODO: add support for the following fusible operators.
// They're a little tricky to implement; max/min require mutability for best perf
// "aten::atan2(Tensor self) -> Tensor",
// "aten::max(Tensor self) -> Tensor",
// "aten::min(Tensor self) -> Tensor"
if (n->kind() == prim::Constant ||
n->kind() == prim::AutogradAdd ||
n->kind() == prim::ConstantChunk)
return true;
if (differentiable_ops.find(n))
return true;
// linear blocks may appear as inputs to graph executors, but they are removed
// before differentiation occurs
if (n->kind() == prim::GradOf) {
auto body = n->blocks().at(0);
return std::all_of(
body->nodes().begin(),
body->nodes().end(),
static_cast<bool (*)(Node*)>(isDifferentiable));
}
return false;
}
bool isDifferentiable(Graph & g) {
return std::all_of(g.nodes().begin(), g.nodes().end(),
static_cast<bool(*)(Node*)>(isDifferentiable));
}
static std::vector<Value*> gradientForNode(Node* node, ArrayRef<Value*> grad_values) {
static const OperatorSet comparison_ops = {
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor"
};
const auto build_sym_grad = [node](const std::vector<SymbolicVariable>& grads) -> std::vector<SymbolicVariable> {
auto inputs = fmap<SymbolicVariable>(node->inputs());
auto outputs = fmap<SymbolicVariable>(node->outputs());
if (node->matches("aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) {
return {grads.at(0), grads.at(0) * node->namedInput(attr::alpha), nullptr};
} else if (node->matches("aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor")) {
return {grads.at(0), nullptr, nullptr};
} else if (node->kind() == prim::AutogradAdd) {
return {grads.at(0), grads.at(0)};
} else if (node->matches("aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) {
return {grads.at(0), -grads.at(0) * node->namedInput(attr::alpha), nullptr};
} else if (node->matches("aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor")) {
return {grads.at(0), nullptr, nullptr};
} else if (node->matches("aten::mul(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) * inputs.at(1), grads.at(0) * inputs.at(0)};
} else if (node->matches("aten::mul(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0) * inputs.at(1), nullptr};
} else if (node->matches("aten::div(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) / inputs.at(1), -grads.at(0) * inputs.at(0) / (inputs.at(1) * inputs.at(1))};
} else if (node->matches("aten::div(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0) / inputs.at(1), nullptr};
} else if (node->matches("aten::sigmoid(Tensor self) -> Tensor")) {
// TODO: The order of operations matter in this case. This
// works for ppc64le and x86_64. Need to look at why the
// order matters.
return {(1 - outputs.at(0)) * outputs.at(0) * grads.at(0)};
} else if (node->matches("aten::tanh(Tensor self) -> Tensor")) {
return {grads.at(0) * (1 - outputs.at(0) * outputs.at(0))};
} else if (node->matches("aten::relu(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0) > at::Scalar(0)).type_as(outputs.at(0))};
} else if (node->matches("aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor")) {
// handle the case that min/max is None
Value* min = inputs.at(1);
Value* max = inputs.at(2);
if (!min->isNone() && !max->isNone()) {
return {grads.at(0)
* (1-(inputs.at(0) <= inputs.at(1)).type_as(inputs.at(0)))
* (1-(inputs.at(0) >= inputs.at(2)).type_as(inputs.at(0))), nullptr, nullptr};
} else if (max->isNone()) {
return {grads.at(0)
* (1-(inputs.at(0) <= inputs.at(1)).type_as(inputs.at(0))), nullptr, nullptr};
} else if (min->isNone()) {
return {grads.at(0)
* (1-(inputs.at(0) >= inputs.at(2)).type_as(inputs.at(0))), nullptr, nullptr};
} else {
return {grads.at(0), nullptr, nullptr};
}
} else if (node->matches("aten::exp(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0))};
} else if (node->matches("aten::t(Tensor self) -> Tensor")) {
return {grads.at(0).t()};
} else if (node->matches("aten::neg(Tensor self) -> Tensor")) {
return {-grads.at(0)};
} else if (node->matches("aten::abs(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).sign()};
} else if (node->matches("aten::acos(Tensor self) -> Tensor")) {
return {grads.at(0) * -((-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt())};
} else if (node->matches("aten::asin(Tensor self) -> Tensor")) {
return {grads.at(0) * (-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt()};
} else if (node->matches("aten::atan(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * inputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::ceil(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::cos(Tensor self) -> Tensor")) {
return {grads.at(0) * -inputs.at(0).sin()};
} else if (node->matches("aten::cosh(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).sinh()};
} else if (node->matches("aten::exp(Tensor self) -> Tensor")) {
return {grads.at(0) * outputs.at(0)};
} else if (node->matches("aten::expm1(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::floor(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::fmod(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0), nullptr};
} else if (node->matches("aten::frac(Tensor self) -> Tensor")) {
return {grads.at(0)};
} else if (node->matches("aten::log(Tensor self) -> Tensor")) {
return {grads.at(0) / inputs.at(0)};
} else if (node->matches("aten::log10(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * 2.3025850929940456)};
} else if (node->matches("aten::log1p(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::log2(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * 0.6931471805599453)};
} else if (node->matches("aten::reciprocal(Tensor self) -> Tensor")) {
return {-grads.at(0) * outputs.at(0) * outputs.at(0)};
} else if (node->matches("aten::remainder(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0), nullptr};
} else if (node->matches("aten::round(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::rsqrt(Tensor self) -> Tensor")) {
return {grads.at(0) * outputs.at(0).pow(3.) * -0.5};
} else if (node->matches("aten::sin(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).cos()};
} else if (node->matches("aten::sinh(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).cosh()};
} else if (node->matches("aten::tan(Tensor self) -> Tensor")) {
return {grads.at(0) * (1. + outputs.at(0) * outputs.at(0))};
} else if (node->matches("aten::trunc(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->kind() == prim::ConstantChunk) {
return {SymbolicVariable::cat(grads, node->i(attr::dim))};
} else if (node->matches("aten::view(Tensor self, int[] size) -> Tensor") ||
node->matches("aten::reshape(Tensor self, int[] shape) -> Tensor")) {
// TODO: if sizes are not available statically, add an operator that reutrns them as a tuple
auto sizes = node->namedInput(attr::self)->type()->expect<CompleteTensorType>()->sizes();
return {grads.at(0).reshape(sizes), nullptr};
} else if (node->matches("aten::type_as(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0).type_as(inputs.at(0)), nullptr};
} else if (node->matches("aten::unsqueeze(Tensor self, int dim) -> Tensor")) {
return {grads.at(0).squeeze(node->namedInput(attr::dim)), nullptr};
} else if (node->matches("aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor")) {
return {grads.at(0) * node->namedInput(attr::beta),
grads.at(0).mm(inputs.at(2).t()) * node->namedInput(attr::alpha),
inputs.at(1).t().mm(grads.at(0)) * node->namedInput(attr::alpha),
nullptr, nullptr};
} else if (node->matches("aten::mm(Tensor self, Tensor mat2) -> Tensor")) {
return {grads.at(0).mm(inputs.at(1).t()), inputs.at(0).t().mm(grads.at(0))};
} else if (node->matches("aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor")) {
const auto& input_sizes = inputs.at(0).sizes();
if (input_sizes.size() == 0)
return {grads.at(0).sum(), nullptr, nullptr};
auto grad_sizes = node->get<std::vector<int64_t>>(attr::size).value();
auto grad = grads.at(0);
while (grad_sizes.size() > input_sizes.size()) {
grad = grad.sum(0, false);
grad_sizes.erase(grad_sizes.begin());
}
for (size_t i = 0; i < input_sizes.size(); ++i) {
if (input_sizes[i] == 1 && grad_sizes[i] > 1) {
grad = grad.sum(i, true);
}
}
return {grad, nullptr, nullptr};
} else if (node->matches("aten::squeeze(Tensor self) -> Tensor")) {
const auto& sizes = inputs.at(0).sizes();
std::vector<size_t> squeezed_dims;
for (size_t i = 0; i < sizes.size(); ++i) {
if (sizes[i] != 1) continue;
squeezed_dims.push_back(i);
}
SymbolicVariable returned_grad = grads.at(0);
for (auto it = squeezed_dims.begin(); it != squeezed_dims.end(); ++it)
returned_grad = returned_grad.unsqueeze(*it);
return {returned_grad};
} else if (node->matches("aten::squeeze(Tensor self, int dim) -> Tensor", /*const_inputs=*/attr::dim)) {
int64_t dim = *node->get<int64_t>(attr::dim);
const auto& sizes = inputs.at(0).sizes();
wrapDim(dim, sizes);
if (sizes.size() == 0) {
return {grads.at(0), nullptr};
}
return {sizes.at(dim) > 1 ? grads.at(0) : grads.at(0).unsqueeze(dim), nullptr};
} else if (node->matches("aten::cat(Tensor[] tensors, int dim) -> Tensor", /*const_inputs=*/attr::dim)) {
int dim = *node->get<int64_t>(attr::dim);
auto tensor_inputs = inputs; tensor_inputs.pop_back();
const auto& first_sizes = tensor_inputs.at(0).sizes();
const auto has_first_sizes = [&first_sizes](SymbolicVariable var) {
return var.sizes() == first_sizes;
};
// NB: this is a specialization for the common case where all inputs are
// of equal sizes. We can use a single split operation to handle that.
if (std::all_of(tensor_inputs.begin(), tensor_inputs.end(), has_first_sizes)) {
auto tensor_grads = grads.at(0).chunk(tensor_inputs.size(), dim);
tensor_grads.push_back(nullptr); // for attr::dim
return tensor_grads;
} else {
size_t offset = 0;
auto grad = grads.at(0);
std::vector<SymbolicVariable> tensor_grads;
for (auto input : tensor_inputs) {
tensor_grads.push_back(grad.narrow(dim, offset, input.sizes()[dim]));
offset += input.sizes()[dim];
}
tensor_grads.push_back(nullptr); // for attr::dim
return tensor_grads;
}
} else if (comparison_ops.find(node)) {
return {nullptr, nullptr};
} else if (node->kind() == prim::Constant) {
return {};
}
throw std::runtime_error(std::string("failed to differentiate `") + node->kind().toDisplayString() + "`");
};
if (!isDifferentiable(node)) {
throw std::runtime_error(std::string("differentiation of ") + node->kind().toDisplayString() + " "
"is not supported, or it is missing necessary type information");
}
auto sym_grads = build_sym_grad(fmap<SymbolicVariable>(grad_values));
return fmap(sym_grads, [](const SymbolicVariable &v) { return v.value(); });
}
// If we have a function y = f(x) with jacobian J, the backwards of f is dx = J^t dy.
// Note that because the backwards always implements this matrix multiply,
// we know that it maps an input vector of zeros to an output vector of zero
// regardless of what operations it choses to do inside to actually implement
// the matrix multiply (most use some optimized form and never generate J^t).
// More generally, we know that all of the backward computations are linear and
// can use this property to do more aggressive optimizations later.
// It is ok to replace any backward function with known-zero inputs with something
// that produces known-zero outputs. This function encloses each know-linear
// backward function in a 'GradOf' sub-block so that we can perform optimizations
// using this information. In particular, specializeUndef will observe if
// all the inputs to the linear block are Undef, which the autograd uses to represent
// zeros, and then propagate the undefs to the outputs of the block.
static std::vector<Value*> linearGradientForNode(Node* node, ArrayRef<Value*> grad_values) {
auto & graph = *node->owningGraph();
auto linear = graph.insertNode(graph.create(prim::GradOf, {grad_values}, 0));
// to make reading gradient graphs easier, remember the name of the forward op
linear->s_(attr::name, node->kind().toDisplayString());
auto block = linear->addBlock();
WithInsertPoint guard(block);
auto results = gradientForNode(node, grad_values);
return fmap(results, [block, linear](Value *grad) -> Value* {
if (!grad) return nullptr;
block->registerOutput(grad);
return linear->addOutput()->copyMetadata(grad);
});
}
struct ReverseDetails {
ReverseDetails(value_map&& grad_map, Block * reverse_block)
: grad_map(std::move(grad_map))
, reverse_block(reverse_block) {}
value_map grad_map;
Block * reverse_block;
};
// AutogradAdd is a special addition function that handles Undef
// AutogradAdd(a, b) == a + b if defined(a) and defined(b)
// AutogradAdd(Undef, b) == b
// AutogradAdd(a, Undef) == a
// AutogradAdd(Undef, Undef) == Undef
static Value* createAutogradAdd(Value* a, Value* b) {
auto graph = a->owningGraph();
return graph->insertNode(graph->create(prim::AutogradAdd, {a, b}))->output();
}
// Before:
// - grad_desc has field f initialized to the original 0-stage graph
// After:
// - the last node of f (f->nodes().reverse()[0]) is a gradient node
// whose block has vjp inputs for all outputs that require_grad
// and vjp outputs for all primal inputs that require_grad
// - grad_desc has df_input_vjps and df_output_vjps set
// (but df_input_vjps will be modified later as well)
static ReverseDetails addReverseInline(Gradient& grad_desc) {
auto & graph = *grad_desc.f;
// note: reverse_node is intentionally not inserted to avoid
// accidentally acting on it (e.g. in elminate dead code),
// std::cout << *reverse_node << to view its state.
auto reverse_node = graph.create(prim::Reverse, 0);
auto reverse_block = reverse_node->addBlock();
WithInsertPoint guard(reverse_block);
value_map grad_map; // x -> dx mapping
const auto get_grad = [&](Value* v) -> Value* {
auto it = grad_map.find(v);
if (it == grad_map.end()) {
auto undef = graph.insertNode(graph.createUndefined());
std::tie(it, std::ignore) = grad_map.emplace(v, undef->output());
}
return it->second;
};
const auto set_grad = [&](Value *x, Value *dx) {
if (Value * prev_grad = grad_map[x]) {
grad_map[x] = createAutogradAdd(prev_grad, dx);
} else {
grad_map[x] = dx;
}
};
auto outputs = graph.outputs();
for (size_t i = 0, num_outputs = outputs.size(); i < num_outputs; ++i) {
Value * output = outputs[i];
if (!output->requires_grad())
continue;
Value * output_grad = reverse_block->addInput()->setType(output->type());
set_grad(output, output_grad);
grad_desc.df_input_vjps.push_back(i);
}
for (auto it = graph.nodes().rbegin(), end = graph.nodes().rend(); it != end; ++it) {
Node *node = *it;
auto inputs = node->inputs();
auto outputs = node->outputs();
if (std::all_of(outputs.begin(), outputs.end(), [](Value *v) { return !v->requires_grad(); })) {
continue;
}
value_list grad_inputs = linearGradientForNode(node, fmap(node->outputs(), get_grad));
JIT_ASSERT(grad_inputs.size() == node->inputs().size());
for (size_t i = 0, num_inputs = grad_inputs.size(); i < num_inputs; ++i) {
if (!inputs[i]->requires_grad()) continue;
// NB: Not returning a gradient w.r.t. a value that requires grad is normal if the
// input is non-differentiable. This happens e.g. in the aten::type_as case.
if (!grad_inputs[i]) continue;
set_grad(inputs[i], grad_inputs[i]);
}
}
auto inputs = graph.inputs();
for (size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) {
Value * input = inputs[i];
if (!input->requires_grad())
continue;
// NB: Not having a gradient defined w.r.t. an input to the graph which requires grad
// can happen and is not an error. It might have been used only in non-differentiable
// contexts (e.g. as second input to aten::type_as). In that case we simply ignore it
// as an output, because it won't ever produce any meaningful values.
if (grad_map.count(input) == 0) continue;
reverse_block->registerOutput(get_grad(input));
grad_desc.df_output_vjps.push_back(i);
}
return ReverseDetails(std::move(grad_map), reverse_block);
}
// Any temporary value from the primal graphs needs to be captured for later use in the
// reverse graph, to avoid costly recomputations. However, a lot of the nodes we have
// in our graphs are simply constants, which are cheap to execute and replicate, and so
// it's better to just copy them into the reverse graph, without polluting the output
// lists unnecessarily.
static void liftConstants(Gradient& grad_desc, ReverseDetails& rev_info) {
static const auto err = [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
};
auto & graph = *grad_desc.f;
Block* reverse_block = rev_info.reverse_block;
for (Node *top_node : reverse_block->nodes()) {
JIT_ASSERT(top_node->kind() == prim::GradOf ||
top_node->kind() == prim::AutogradAdd ||
top_node->kind() == prim::Undefined);
if (top_node->kind() != prim::GradOf) continue;
Block * grad_body = top_node->blocks().at(0);
for (Node *node : grad_body->nodes()) {
for (Value * input : node->inputs()) {
if (input->node()->kind() != prim::Constant) continue;
if (input->node()->owningBlock() == grad_body) continue;
Node *lifted_constant = graph.createClone(input->node(), err);
reverse_block->prependNode(lifted_constant);
node->replaceInputWith(input, lifted_constant->output());
}
}
}
// It's possible the we've cloned the same constants many times,
// so we use CSE to deduplicate them.
EliminateCommonSubexpression(reverse_block);
}
// Takes a grad_desc.f returned from `addReverseInline` and splits off the
// reverse_block into its own graph, storing it in df.
// All intermediates needed in the second stage are added to
// outputs of f, and taken as inputs in df. For a more
// detailed description see Note [Gradient graphs] in autodiff.h.
// This function also initializes the fields in grad_desc that were undefined after
// `addReverseInline` (and extends `df_input_vjps` with vjps for captured temporaries).
static void lambdaLiftReverse(Gradient& grad_desc, ReverseDetails& rev_info) {
auto & graph = *grad_desc.f;
auto primal_block = graph.block();
auto reverse_block = rev_info.reverse_block;
// --------------------------------------------------------------------------
// 1. Find values of f that need to be captured.
// --------------------------------------------------------------------------
// First, we need to find all values that are produced in f,
// and used in df. They will need to be added as inputs of the df
// and some of them may also need to be appended as outputs of f if
// they are not already an input or an output of f
value_set reverse_captures_set;
value_list reverse_captures; // Invariant: topo sorted
auto check_uses = [&](Value *v) {
for (auto use : v->uses()) {
if (use.user->owningBlock() == primal_block)
continue;
if (/* bool unseen = */ reverse_captures_set.emplace(v).second) {
reverse_captures.push_back(v);
}
}
};
for (Value * input : graph.inputs()) {
check_uses(input);
}
for (Node * node : graph.nodes()) {
for (Value * output : node->outputs())
check_uses(output);
}
// --------------------------------------------------------------------------
// 2. Prepare input/outputs lists for f and df
// --------------------------------------------------------------------------
// It's simple to construct primal_inputs/reverse_outputs,
// but primal_outputs/reverse_inputs are much more subtle.
// Here's a summary of how they are supposed to look like:
//
// Primal outputs:
// [original outputs], [temporaries]
//
// Reverse inputs:
// [output vjps (aka grad_outputs)], [temporary vjps]
// [captured primal values, in topological order],
// -- Construct primal_outputs, df_input_captures, f_real_outputs ----
grad_desc.f_real_outputs = graph.outputs().size();
std::unordered_map<Value*, size_t> orig_primal_outputs_idx;
std::unordered_map<Value*, size_t> orig_primal_inputs_idx;
// NOTE: we use emplace to avoid replacing an existing index if an output is repeated
for (size_t i = 0, num_outputs = graph.outputs().size(); i < num_outputs; ++i)
orig_primal_outputs_idx.emplace(graph.outputs()[i], i);
for (size_t i = 0, num_inputs = graph.inputs().size(); i < num_inputs; ++i)
orig_primal_inputs_idx[graph.inputs()[i]] = i;
// NB: reverse_captures are already deduplicated, and in topo order
for (Value * capture_val : reverse_captures) {
// If it's already an output we don't have to add anything,
// but register the fact that it needs to be captured.
if (orig_primal_outputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_outputs.push_back(orig_primal_outputs_idx[capture_val]);
// If it's an input, we could add it as an output but in fact it's
// more efficient to use a special kind of capture.
} else if (orig_primal_inputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_inputs.push_back(orig_primal_inputs_idx.at(capture_val));
// Otherwise it's just a regular intermediate value that we need to add as an output
} else {
// we need to create a new temporary output for this capture because it wasn't availiable.
graph.registerOutput(capture_val);
grad_desc.df_input_captured_outputs.emplace_back(graph.outputs().size() - 1);
}
}
// -- Add VJPs for temporaries, adjust df_input_vjps -------------------------
// NB [possible optimization]: use the newly added vjp input as soon as the first
// vjp for that value is generated, to reduce the lifespan of this input
// (currently we add it to the final vjp after all adds).
for (size_t i = grad_desc.f_real_outputs; i < graph.outputs().size(); ++i) {
Value * tmp = graph.outputs().at(i);
// Add VJP inputs only for intermediates that actually required grad.
if (!tmp->requires_grad()) continue;
Value * tmp_vjp_in = reverse_block->addInput()->setType(tmp->type());
Value * tmp_vjp_prev = rev_info.grad_map.at(tmp);
// This is quite weird because we can't first make a sum and then replace all uses
// of tmp_vjp_prev (that would replace its use in the sum too!), so we create an
// incorrect sum that doesn't use prev vjp, replace uses, and fix the sum.
Value * new_vjp = createAutogradAdd(tmp_vjp_in, tmp_vjp_in);
new_vjp->node()->moveAfter(tmp_vjp_prev->node());
tmp_vjp_prev->replaceAllUsesWith(new_vjp);
new_vjp->node()->replaceInput(1, tmp_vjp_prev);
grad_desc.df_input_vjps.emplace_back(i);
}
// add the captures as formal arguments to the reverse_block
// afterward inputs: [output vjps][temporary vjps][captures]
// construct a map from captured 'value' to the index in the input list
// used to extract this block into its own function
std::unordered_map<Value*, size_t> capture_to_formal_index;
const auto & add_capture = [&](Value * captured) {
capture_to_formal_index[captured] = reverse_block->inputs().size();
reverse_block->addInput()->copyMetadata(captured);
};
for(auto & offset : grad_desc.df_input_captured_inputs)
add_capture(graph.inputs()[offset]);
for(auto & offset : grad_desc.df_input_captured_outputs)
add_capture(graph.outputs()[offset]);
grad_desc.df = std::make_shared<Graph>();
grad_desc.df->block()->cloneFrom(reverse_block, [&](Value* v) {
return grad_desc.df->inputs()[capture_to_formal_index.at(v)];
});
// reverse_node was just to hold onto reverse_block in a debuggable way
// we can remove it now.
reverse_block->owningNode()->destroy();
}
Gradient differentiate(std::shared_ptr<Graph>& graph) {
Gradient grad_desc;
// Take ownership of the graph
JIT_ASSERTM(graph.use_count() == 1,
"differentiate will mutate and destroy the graph, so it requires "
"graph.use_count() == 1, but found %d", graph.use_count());
std::swap(graph, grad_desc.f);
// XXX: Take care when handling outputs - they can be duplicated!
WithInsertPoint guard(grad_desc.f->block());
// Fills in df_input_vjps and df_output_vjps
auto rev_info = addReverseInline(grad_desc);
// Lift constants captured for the reverse graph into it
liftConstants(grad_desc, rev_info);
// addReverseInline has to call gradientForNode if *any* of the outputs
// require grad, but it will emit vjps for *all* outputs. Use DCE to remove
// unnecessary nodes.
EliminateDeadCode(rev_info.reverse_block);
// Fills in f, df, f_real_outputs, df_input_captures,
// modifies df_input_vjps (new vjps are added for temporaries)
lambdaLiftReverse(grad_desc, rev_info);
return grad_desc;
}
}}