forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.cpp
939 lines (841 loc) · 33.2 KB
/
export.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
#include "torch/csrc/jit/export.h"
#include "torch/csrc/autograd/symbolic.h"
#include "torch/csrc/onnx/onnx.h"
#include "torch/csrc/utils/functional.h"
#include <torch/csrc/jit/assertions.h>
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "caffe2/serialize/inline_container.h"
#include "onnx/onnx_pb.h"
#include <ATen/ATen.h>
#include "c10/util/Optional.h"
#include <memory>
#include <vector>
#include <string>
#include <sstream>
#include <fstream>
namespace torch { namespace jit {
namespace {
namespace onnx_torch = ::torch::onnx;
namespace onnx = ::ONNX_NAMESPACE;
std::string getExportableSchemaStringForMethod(const script::Method& method) {
const auto& schema = method.getSchema();
for (const auto& argument : schema.arguments()) {
AT_CHECK(
!argument.default_value(),
"Default arguments in script graphs may currently not be exported.");
}
std::ostringstream stream;
stream << schema;
return stream.str();
}
std::string getNodeStackTraceString(const Node* n) {
std::stringstream ss;
if (n->getSourceLocation()) {
n->getSourceLocation()->highlight(ss);
} else {
ss << "<unknown location>";
}
return ss.str();
}
void validateBlock(Block *b, onnx_torch::OperatorExportTypes operator_export_type) {
for (auto node : b->nodes()) {
for (Block *sub_block : node->blocks()) {
validateBlock(sub_block, operator_export_type);
}
// Macro'ed so we get a marginally better line number on failed export
#define FAIL_EXPORT(name) \
throw std::runtime_error(std::string("ONNX export failed: ") + name + "\n\nGraph we tried to export:\n" + b->owningGraph()->toString());
IR_IF(node, PythonOp)
auto py_node = static_cast<torch::jit::PythonOp*>(value);
FAIL_EXPORT(
"Couldn't export Python operator " + py_node->name() +
"\n\nDefined at:\n" + getNodeStackTraceString(node))
IR_ELSE()
// Special error messages for certain types of operators
if (node->kind() == aten::expand) {
if (operator_export_type == onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK) {
WithInsertPoint guard(node);
auto* new_node = b->owningGraph()->insertNode(
b->owningGraph()->create(Symbol(::torch::jit::onnx::ATen), node->inputs(), node->outputs().size()));
for (size_t i = 0; i < node->outputs().size(); ++i) {
node->output(i)->replaceAllUsesWith(new_node->output(i));
}
new_node->s_(Symbol::fromQualString("attr::operator"), "expand");
} else {
FAIL_EXPORT(
"Could not export a broadcasted operation; ONNX likely does not support this form of broadcasting.\n\nBroadcast occurred at:\n" +
getNodeStackTraceString(node));
}
}
if (node->kind() == prim::PackPadded || node->kind() == prim::PadPacked) {
FAIL_EXPORT(
"Cannot export individual pack_padded_sequence or pad_packed_sequence; these operations must occur in pairs.\n\nUsage of this operation occurred at:\n" +
getNodeStackTraceString(node));
}
bool is_aten_fallback = operator_export_type == onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK;
if (!node->kind().is_onnx() && !is_aten_fallback && node->kind() != prim::Undefined) {
FAIL_EXPORT(
"Couldn't export operator " + node->kind().toDisplayString() + "\n\nDefined at:\n" +
getNodeStackTraceString(node));
}
IR_END()
#undef FAIL_EXPORT
}
}
void validateGraph(const std::shared_ptr<Graph>& graph, onnx_torch::OperatorExportTypes operator_export_type) {
validateBlock(graph->block(), operator_export_type);
EliminateDeadCode(graph);
}
class EncoderBase {
public:
EncoderBase(onnx_torch::OperatorExportTypes operator_export_type, bool strip_doc);
onnx::ModelProto get_model_proto() {
return model_proto_;
}
protected:
void EncodeGraph(onnx::GraphProto *graph_proto,
const std::shared_ptr<Graph> &graph,
const std::vector<at::Tensor> &initializers = {});
void EncodeBlock(onnx::GraphProto *graph_proto,
const Block *block,
const std::vector<at::Tensor> &initializers = {});
virtual void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {}) = 0;
virtual void EncodeIntermediateValueInfo(onnx::GraphProto *graph_proto,
const Value* n) {};
virtual void EncodeValueInfo(onnx::GraphProto *graph_proto,
onnx::ValueInfoProto* v,
const Value* n);
void AddAttribute(onnx::NodeProto *node_proto, const jit::Node *node, const jit::Symbol name);
onnx::ModelProto model_proto_;
size_t num_blocks_;
onnx_torch::OperatorExportTypes operator_export_type_;
bool strip_doc_;
};
onnx::TensorProto_DataType ATenTypeToOnnxType(at::ScalarType at_type) {
switch(at_type) {
case at::kDouble:
return onnx::TensorProto_DataType_DOUBLE;
case at::kFloat:
return onnx::TensorProto_DataType_FLOAT;
case at::kHalf:
return onnx::TensorProto_DataType_FLOAT16;
case at::kByte:
return onnx::TensorProto_DataType_UINT8;
case at::kChar:
return onnx::TensorProto_DataType_INT8;
case at::kShort:
return onnx::TensorProto_DataType_INT16;
case at::kInt:
return onnx::TensorProto_DataType_INT32;
case at::kLong:
return onnx::TensorProto_DataType_INT64;
default:
AT_ERROR("unexpected tensor scalar type");
}
}
EncoderBase::EncoderBase(onnx_torch::OperatorExportTypes operator_export_type, bool strip_doc)
: num_blocks_(0),
operator_export_type_(operator_export_type),
strip_doc_(strip_doc) {
model_proto_.set_producer_name("pytorch");
model_proto_.set_ir_version(onnx::IR_VERSION);
model_proto_.set_producer_version("0.4");
}
void EncoderBase::EncodeValueInfo(
onnx::GraphProto *graph_proto,
onnx::ValueInfoProto* v,
const Value* n) {
v->set_name(n->uniqueName());
onnx::TypeProto* t = v->mutable_type();
onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type();
onnx::TensorShapeProto* shape = tensor_type->mutable_shape();
if (CompleteTensorTypePtr node_type = n->type()->cast<CompleteTensorType>()) {
const std::vector<std::int64_t>& sizes = node_type->sizes();
for (size_t i = 0; i < sizes.size(); i++) {
shape->add_dim();
shape->mutable_dim(i)->set_dim_value(sizes[i]);
}
tensor_type->set_elem_type(ATenTypeToOnnxType(node_type->scalarType()));
} else {
tensor_type->set_elem_type(onnx::TensorProto_DataType_UNDEFINED);
}
}
void EncoderBase::EncodeGraph(
onnx::GraphProto *graph_proto,
const std::shared_ptr<Graph> &graph,
const std::vector<at::Tensor> &initializers) {
EncodeBlock(graph_proto, graph->block(), initializers);
}
void EncoderBase::EncodeBlock(
onnx::GraphProto *graph_proto, const Block *block,
const std::vector<at::Tensor> &initializers) {
JIT_ASSERT(graph_proto != nullptr);
std::string block_name = "torch-jit-export";
if (num_blocks_) {
block_name += std::to_string(num_blocks_);
}
num_blocks_++;
graph_proto->set_name(block_name);
for (auto input : block->inputs()) {
onnx::ValueInfoProto* v = graph_proto->add_input();
EncodeValueInfo(graph_proto, v, input);
}
for (auto output : block->outputs()) {
onnx::ValueInfoProto* v = graph_proto->add_output();
EncodeValueInfo(graph_proto, v, output);
}
for (auto node : block->nodes()) {
bool is_raw_export = operator_export_type_ == onnx_torch::OperatorExportTypes::RAW;
if (node->kind() == prim::Undefined && !is_raw_export) {
// Undefined nodes are used to implement optional inputs. One
// way to "not provide" an optional input is to create an
// Undefined node, and pass its output as that input.
continue;
}
auto p_n = graph_proto->add_node();
if (node->getSourceLocation() && !strip_doc_) {
std::stringstream ss;
node->getSourceLocation()->highlight(ss);
p_n->set_doc_string(ss.str());
}
for(auto input : node->inputs()) {
if (input->node()->kind() == prim::Undefined && !is_raw_export) {
p_n->add_input("");
} else {
p_n->add_input(input->uniqueName());
}
}
for(auto output : node->outputs()) {
p_n->add_output(output->uniqueName());
EncodeIntermediateValueInfo(graph_proto, output);
}
if (is_raw_export) {
JIT_ASSERT(!node->kind().is_onnx());
p_n->set_domain(node->kind().domainString());
}
else if (operator_export_type_ == onnx_torch::OperatorExportTypes::ONNX) {
JIT_ASSERT(node->kind().is_onnx());
}
p_n->set_op_type(node->kind().toUnqualString());
for(auto attr_name : node->attributeNames()) {
AddAttribute(p_n, node, attr_name);
}
if (is_raw_export && node->blocks().size() > 0) {
auto blocks = p_n->add_attribute();
blocks->set_name("_blocks");
blocks->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
for (auto block : node->blocks()) {
auto graph = blocks->add_graphs();
EncodeBlock(graph, block, initializers);
}
}
if (node->kind() == torch::jit::onnx::Loop) {
JIT_ASSERT(node->blocks().size() == 1);
auto body = p_n->add_attribute();
body->set_name("body");
body->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto g = body->mutable_g();
EncodeBlock(g, node->blocks()[0]);
}
if (node->kind() == torch::jit::onnx::If) {
JIT_ASSERT(node->blocks().size() == 2);
auto true_branch = p_n->add_attribute();
true_branch->set_name("then_branch");
true_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto true_g = true_branch->mutable_g();
EncodeBlock(true_g, node->blocks()[0]);
auto false_branch = p_n->add_attribute();
false_branch->set_name("else_branch");
false_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto false_g = false_branch->mutable_g();
EncodeBlock(false_g, node->blocks()[1]);
}
}
auto num_initializers = initializers.size();
JIT_ASSERT(block->inputs().size() >= num_initializers);
size_t inputs_count = block->inputs().size() - num_initializers;
for (auto & tensor : initializers) {
// TODO: stop using positions to determine which initializers
// match to which inputs
std::string name = graph_proto->input(inputs_count++).name();
auto p = graph_proto->add_initializer();
p->set_name(name);
EncodeTensor(p, tensor, name);
}
}
void EncoderBase::AddAttribute(onnx::NodeProto *node_proto, const jit::Node *node, const jit::Symbol name) {
auto attr = node_proto->add_attribute();
JIT_ASSERT(name.is_attr());
attr->set_name(name.toUnqualString());
switch(node->kindOf(name)) {
case AttributeKind::f:
attr->set_f(node->f(name));
attr->set_type(onnx::AttributeProto_AttributeType_FLOAT);
break;
case AttributeKind::fs:
attr->set_type(onnx::AttributeProto_AttributeType_FLOATS);
for(auto & v : node->fs(name))
attr->add_floats(v);
break;
case AttributeKind::i:
attr->set_type(onnx::AttributeProto_AttributeType_INT);
attr->set_i(node->i(name));
break;
case AttributeKind::is:
attr->set_type(onnx::AttributeProto_AttributeType_INTS);
for(auto & v : node->is(name))
attr->add_ints(v);
break;
case AttributeKind::s:
attr->set_type(onnx::AttributeProto_AttributeType_STRING);
attr->set_s(node->s(name));
break;
case AttributeKind::ss:
attr->set_type(onnx::AttributeProto_AttributeType_STRINGS);
for(auto & v : node->ss(name))
attr->add_strings(v);
break;
case AttributeKind::t: {
attr->set_type(onnx::AttributeProto_AttributeType_TENSOR);
auto t = attr->mutable_t();
EncodeTensor(t, node->t(name));
} break;
case AttributeKind::ts:
attr->set_type(onnx::AttributeProto_AttributeType_TENSORS);
for(auto & v : node->ts(name)) {
auto t = attr->add_tensors();
EncodeTensor(t, v);
}
break;
case AttributeKind::g: {
attr->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto g = attr->mutable_g();
EncodeGraph(g, node->g(name));
} break;
case AttributeKind::gs:
attr->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
for(auto & v : node->gs(name)) {
auto g = attr->add_graphs();
EncodeGraph(g, v);
}
break;
default:
throw std::runtime_error("unexpected attribute kind");
}
}
class GraphEncoder: public EncoderBase {
public:
GraphEncoder(const std::shared_ptr<Graph> &graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::vector<at::Tensor> &initializers,
bool defer_weight_export,
bool strip_doc);
RawDataExportMap get_raw_data_export_map() {
return raw_data_export_map_;
}
private:
virtual void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {}) override;
RawDataExportMap raw_data_export_map_;
bool defer_weight_export_;
};
GraphEncoder::GraphEncoder(
const std::shared_ptr<Graph> &graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::vector<at::Tensor> &initializers,
bool defer_weight_export,
bool strip_doc)
: EncoderBase(operator_export_type, strip_doc),
defer_weight_export_(defer_weight_export) {
if (operator_export_type != onnx_torch::OperatorExportTypes::RAW) {
validateGraph(graph, operator_export_type);
}
auto* imp = model_proto_.add_opset_import();
// This is the version of ONNX operator set we are targeting
imp->set_version(onnx_opset_version);
EncodeGraph(model_proto_.mutable_graph(), graph, initializers);
}
void GraphEncoder::EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref) {
for(auto d : tensor.sizes()) {
tensor_proto->add_dims(d);
}
tensor_proto->set_data_type(ATenTypeToOnnxType(tensor.type().scalarType()));
// CPU's HalfTensor doesn't have contiguous(), so first calling contiguous()
auto t = tensor.contiguous().cpu();
// Add a buffer to the raw_data_export_map for the caller to dump into an
// external data store. If external_ref is not specified, we instead dump
// the contiguous data into the protobuf itself
if (defer_weight_export_ && external_ref) {
// For now, we use the name of the tensor as the external lookup name to
// avoid ONNX protobuf changes.
JIT_ASSERT(external_ref.value() == tensor_proto->name());
JIT_ASSERT(raw_data_export_map_.count(external_ref.value()) == 0);
raw_data_export_map_[external_ref.value()] = t;
tensor_proto->set_raw_data("__EXTERNAL");
} else {
JIT_ASSERT(t.is_contiguous());
tensor_proto->set_raw_data(std::string(static_cast<char*>(t.data_ptr()), t.type().elementSizeInBytes() * t.numel()));
}
}
class ModuleEncoder: public EncoderBase {
public:
ModuleEncoder(const script::Module &module,
std::ostream& out);
private:
void EncodeModule(onnx::GraphProto *graph_proto, const script::Module &module);
void EncodeParameters(onnx::GraphProto *graph_proto,
const script::Module &module,
const std::string prefix);
void EncodeParameter(onnx::TensorProto *tensor_proto,
const script::NamedParameter ¶meter,
const std::string prefix);
void EncodeMethods(onnx::GraphProto *graph_proto,
const script::Module &module,
const std::string prefix);
void EncodeMethod(onnx::NodeProto *node_proto,
script::Method &method,
const std::string prefix);
virtual void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {}) override;
virtual void EncodeIntermediateValueInfo(onnx::GraphProto *graph_proto,
const Value* n) override;
virtual void EncodeValueInfo(onnx::GraphProto *graph_proto,
onnx::ValueInfoProto* v,
const Value* n) override;
void EncodeTypeInfo(onnx::GraphProto *graph_proto,
onnx::ValueInfoProto* v,
const TypePtr& type,
const std::string& name);
PyTorchStreamWriter stream_writer_;
// Used to deduplicate tensor storages
std::unordered_map<const void*, uint64_t> storage_dedup_map_;
// Used to keep track of Parameter names so Methods can refer to them
std::unordered_map<at::Tensor*, std::string> parameter_map_;
// Used to create sequential dummy names for node types
size_t type_counter_ = 0;
};
ModuleEncoder::ModuleEncoder(
const script::Module &module,
std::ostream& out)
: EncoderBase(onnx_torch::OperatorExportTypes::RAW, false),
stream_writer_(&out) {
model_proto_.set_doc_string("THIS PROTO IS NOT STANDARD ONNX");
EncodeModule(model_proto_.mutable_graph(), module);
}
void ModuleEncoder::EncodeIntermediateValueInfo(onnx::GraphProto *graph_proto, const Value *n) {
auto v = graph_proto->add_value_info();
EncodeTypeInfo(graph_proto, v, n->type(), n->uniqueName());
}
void ModuleEncoder::EncodeTypeInfo(
onnx::GraphProto *graph_proto,
onnx::ValueInfoProto* v,
const TypePtr& type,
const std::string& name) {
v->set_name(name);
onnx::TypeProto* type_proto = v->mutable_type();
onnx::TypeProto_Tensor* tensortype_proto = type_proto->mutable_tensor_type();
onnx::TensorShapeProto* shape_proto = tensortype_proto->mutable_shape();
// Use TypeProto fields to encode types.
// denotation stores the type as a string
auto kind = type->kind();
if (kind == TypeKind::DynamicType) {
type_proto->set_denotation("DynamicType");
tensortype_proto->set_elem_type(onnx::TensorProto_DataType_UNDEFINED);
} else if (kind == TypeKind::TensorType) {
type_proto->set_denotation("TensorType");
// encode the number of dimensions by pushing that number of ones into the shape proto
auto tensor_type = type->expect<TensorType>();
for (int i = 0; i < tensor_type->dim(); i++) {
shape_proto->add_dim();
shape_proto->mutable_dim(i)->set_dim_value(1);
}
tensortype_proto->set_elem_type(ATenTypeToOnnxType(tensor_type->scalarType()));
} else if (kind == TypeKind::CompleteTensorType) {
type_proto->set_denotation("CompleteTensorType");
CompleteTensorTypePtr node_type = type->cast<CompleteTensorType>();
// store the sizes and strides in the dims field of TensorShapeProto
size_t i = 0;
for (auto &size : node_type->sizes()) {
shape_proto->add_dim();
shape_proto->mutable_dim(i)->set_dim_value(size);
i++;
}
for (auto &stride : node_type->strides()) {
shape_proto->add_dim();
shape_proto->mutable_dim(i)->set_dim_value(stride);
i++;
}
tensortype_proto->set_elem_type(ATenTypeToOnnxType(node_type->scalarType()));
} else if (kind == TypeKind::TupleType) {
type_proto->set_denotation("TupleType");
TupleTypePtr node_type = type->cast<TupleType>();
auto elements = node_type->elements();
// Generate a name for and encode each subtype in the value_info field of the GraphProto.
for (size_t i = 0; i < elements.size(); i++) {
std::string name = "#" + std::to_string(type_counter_++);
shape_proto->add_dim();
shape_proto->mutable_dim(i)->set_dim_param(name);
onnx::ValueInfoProto* subtype_proto = graph_proto->add_value_info();
EncodeTypeInfo(graph_proto, subtype_proto, elements[i], name);
}
} else if (kind == TypeKind::ListType) {
type_proto->set_denotation("ListType");
ListTypePtr node_type = type->cast<ListType>();
// Generate a name for and encode the subtype in the value_info field of the GraphProto.
std::string name = "#" + std::to_string(type_counter_++);
shape_proto->add_dim();
shape_proto->mutable_dim(0)->set_dim_param(name);
onnx::ValueInfoProto* subtype_proto = graph_proto->add_value_info();
EncodeTypeInfo(graph_proto, subtype_proto, node_type->getElementType(), name);
} else if (kind == TypeKind::NumberType) {
type_proto->set_denotation("NumberType");
} else if (kind == TypeKind::FloatType) {
type_proto->set_denotation("FloatType");
} else if (kind == TypeKind::IntType) {
type_proto->set_denotation("IntType");
} else if (kind == TypeKind::BoolType) {
type_proto->set_denotation("BoolType");
} else if (kind == TypeKind::NoneType) {
type_proto->set_denotation("NoneType");
} else if (kind == TypeKind::GeneratorType) {
type_proto->set_denotation("GeneratorType");
} else if (kind == TypeKind::StringType) {
type_proto->set_denotation("StringType");
} else if (kind == TypeKind::VarType) {
type_proto->set_denotation("TypeVar:" + type->expect<VarType>()->name());
} else if (kind == TypeKind::WorldType) {
type_proto->set_denotation("WorldType");
} else {
throw std::runtime_error("unexpected type kind");
}
}
void ModuleEncoder::EncodeValueInfo(
onnx::GraphProto *graph_proto,
onnx::ValueInfoProto* v,
const Value* n) {
EncodeTypeInfo(graph_proto, v, n->type(), n->uniqueName());
}
void ModuleEncoder::EncodeModule(
onnx::GraphProto *graph_proto,
const script::Module &module) {
EncodeParameters(graph_proto, module, "");
EncodeMethods(graph_proto, module, "");
auto str = model_proto_.SerializeAsString();
stream_writer_.writeRecord(str.data(), str.size());
}
void ModuleEncoder::EncodeParameters(
onnx::GraphProto *graph_proto,
const script::Module &module,
const std::string prefix) {
// Encode each parameter as a initializer in the proto
for (auto ¶meter : module.get_parameters()) {
auto tensor_proto = graph_proto->add_initializer();
EncodeParameter(tensor_proto, parameter.value, prefix);
}
for (auto &submodule : module.get_modules()) {
EncodeParameters(graph_proto, *submodule.value.module, prefix + submodule.key + ".");
}
}
void ModuleEncoder::EncodeParameter(
onnx::TensorProto *tensor_proto,
const script::NamedParameter ¶meter,
const std::string prefix) {
auto tensor = parameter.slot();
// Name will be prefixed by submodule. e.g. submodule_foo.parameter_bar
auto name = prefix + parameter.name;
tensor_proto->set_name(name);
parameter_map_[tensor] = name;
// Parameters have these fields, but tensors do not
tensor_proto->add_int64_data(parameter.is_buffer);
tensor_proto->add_int64_data(tensor->requires_grad());
EncodeTensor(tensor_proto, *tensor, name);
}
void ModuleEncoder::EncodeMethods(
onnx::GraphProto *graph_proto,
const script::Module &module,
const std::string prefix) {
// Encode each parameter as a initializer in the proto
for (auto &method : module.get_methods()) {
auto node_proto = graph_proto->add_node();
EncodeMethod(node_proto, *method.value, prefix);
}
for (auto &submodule : module.get_modules()) {
EncodeMethods(graph_proto, *submodule.value.module, prefix + submodule.key + ".");
}
}
void ModuleEncoder::EncodeMethod(
onnx::NodeProto *node_proto,
script::Method &method,
const std::string prefix) {
node_proto->set_name(prefix + method.name());
if (method.is_optimized()) {
// mark that this method was optimized
node_proto->set_domain("optimized");
}
// We store the schema string in the docstring.
node_proto->set_doc_string(getExportableSchemaStringForMethod(method));
// Store member_inputs of Method in input
for (auto &member_input : method.params()) {
auto it = parameter_map_.find(member_input);
JIT_ASSERT(it != parameter_map_.end());
node_proto->add_input(it->second);
}
auto attr_proto = node_proto->add_attribute();
attr_proto->set_type(onnx::AttributeProto_AttributeType_GRAPH);
for (auto node : method.graph()->nodes()) {
if (node->kind() == prim::PythonOp) {
auto py_node = static_cast<torch::jit::PythonOp*>(node);
throw std::runtime_error(
"Couldn't export Python operator " + py_node->name() +
"\n\nDefined at:\n" + getNodeStackTraceString(node));
}
}
EncodeBlock(attr_proto->mutable_g(), method.graph()->block(), {});
}
void ModuleEncoder::EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref) {
auto storage_ptr = tensor.storage().unsafeGetStorageImpl();
auto dedup_it = storage_dedup_map_.find(storage_ptr);
if (dedup_it != storage_dedup_map_.end()) {
tensor_proto->add_int64_data(dedup_it->second);
} else {
at::Tensor t = tensor;
if (tensor.storage().device_type() == at::DeviceType::CUDA) {
// NB: This new tensor is created to support cuda tensors.
// Storages can be mutated when converting tensors from cuda to cpu,
// and we need a cpu tensor to copy data from.
t = at::getType(tensor)._th_tensor(
tensor.storage(),
/* storageOffset = */ 0,
/* size = */ { static_cast<int64_t>(tensor.storage().size()) },
/* stride = */ { 1 })
.cpu();
}
auto record_number = stream_writer_.writeRecord(
static_cast<char*>(t.storage().data()), t.type().elementSizeInBytes() * t.storage().size());
tensor_proto->add_int64_data(record_number);
storage_dedup_map_[storage_ptr] = record_number;
}
for (auto &d : tensor.sizes()) {
tensor_proto->add_dims(d);
}
tensor_proto->set_data_type(ATenTypeToOnnxType(tensor.type().scalarType()));
tensor_proto->add_int64_data(tensor.storage_offset());
for (auto &d : tensor.strides()) {
tensor_proto->add_int64_data(d);
}
}
// Pretty printing
namespace {
constexpr char indent_char = ' ';
constexpr size_t indent_multiplier = 2;
std::string idt(size_t indent) {
return std::string(indent * indent_multiplier, indent_char);
}
std::string nlidt(size_t indent) {
return std::string("\n") + idt(indent);
}
void dump(const onnx::TensorProto& tensor, std::ostream& stream) {
stream << "TensorProto shape: [";
for (int i = 0; i < tensor.dims_size(); ++i) {
stream << tensor.dims(i) << (i == tensor.dims_size() - 1 ? "" : " ");
}
stream << "]";
}
void dump(const onnx::TensorShapeProto& shape, std::ostream& stream) {
for (int i = 0; i < shape.dim_size(); ++i) {
auto &dim = shape.dim(i);
if (dim.has_dim_value()) {
stream << dim.dim_value();
} else {
stream << "?";
}
stream << (i == shape.dim_size() - 1 ? "" : " ");
}
}
void dump(const onnx::TypeProto_Tensor& tensor_type, std::ostream& stream) {
stream << "Tensor dims: ";
dump(tensor_type.shape(), stream);
}
void dump(const onnx::TypeProto& type, std::ostream& stream) {
dump(type.tensor_type(), stream);
}
void dump(const onnx::ValueInfoProto& value_info, std::ostream& stream) {
stream << "{name: \"" << value_info.name()
<< "\", type:";
dump(value_info.type(), stream);
stream << "}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent);
void dump(const onnx::AttributeProto& attr, std::ostream& stream, size_t indent) {
stream << "{ name: '" << attr.name() << "', type: ";
if (attr.has_f()) {
stream << "float, value: " << attr.f();
} else if (attr.has_i()) {
stream << "int, value: " << attr.i();
} else if (attr.has_s()) {
stream << "string, value: '" << attr.s() << "'";
} else if (attr.has_g()) {
stream << "graph, value:\n";
dump(attr.g(), stream, indent+1);
stream << nlidt(indent);
} else if (attr.has_t()) {
stream << "tensor, value:";
dump(attr.t(), stream);
} else if (attr.floats_size()) {
stream << "floats, values: [";
for (int i = 0; i < attr.floats_size(); ++i)
stream << attr.floats(i) << (i == attr.floats_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.ints_size()) {
stream << "ints, values: [";
for (int i = 0; i < attr.ints_size(); ++i)
stream << attr.ints(i) << (i == attr.ints_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.strings_size()) {
stream << "strings, values: [";
for (int i = 0; i < attr.strings_size(); ++i)
stream << "'" << attr.strings(i) << "'" << (i == attr.strings_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.tensors_size()) {
stream << "tensors, values: [";
for (auto& t : attr.tensors()) {
dump(t, stream);
}
stream << "]";
} else if (attr.graphs_size()) {
stream << "graphs, values: [";
for (auto& g : attr.graphs()) {
dump(g, stream, indent+1);
}
stream << "]";
} else {
stream << "UNKNOWN";
}
stream << "}";
}
void dump(const onnx::NodeProto& node, std::ostream& stream, size_t indent) {
stream << "Node {type: \"" << node.op_type() << "\", inputs: [";
for (int i = 0; i < node.input_size(); ++i) {
stream << node.input(i) << (i == node.input_size() - 1 ? "" : ",");
}
stream << "], outputs: [";
for (int i = 0; i < node.output_size(); ++i) {
stream << node.output(i) << (i == node.output_size() - 1 ? "" : ",");
}
stream << "], attributes: [";
for (int i = 0; i < node.attribute_size(); ++i) {
dump(node.attribute(i), stream, indent+1);
stream << (i == node.attribute_size() - 1 ? "" : ",");
}
stream << "]}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent) {
stream << idt(indent) << "GraphProto {" << nlidt(indent+1)
<< "name: \"" << graph.name() << "\"" << nlidt(indent+1)
<< "inputs: [";
for (int i = 0; i < graph.input_size(); ++i) {
dump(graph.input(i), stream);
stream << (i == graph.input_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent+1)
<< "outputs: [";
for (int i = 0; i < graph.output_size(); ++i) {
dump(graph.output(i), stream);
stream << (i == graph.output_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent+1)
<< "initializers: [";
for (int i = 0; i < graph.initializer_size(); ++i) {
dump(graph.initializer(i), stream);
stream << (i == graph.initializer_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent+1)
<< "nodes: [" << nlidt(indent+2);
for (int i = 0; i < graph.node_size(); ++i) {
dump(graph.node(i), stream, indent+2);
if (i != graph.node_size() - 1) stream << "," << nlidt(indent+2);
}
stream << nlidt(indent+1) << "]\n" << idt(indent) << "}\n";
}
void dump(const onnx::OperatorSetIdProto& operator_set_id, std::ostream& stream) {
stream << "OperatorSetIdProto { domain: " << operator_set_id.domain() << "}";
}
void dump(const onnx::ModelProto& model, std::ostream& stream, size_t indent) {
stream << idt(indent)
<< "ModelProto {" << nlidt(indent+1)
<< "producer_name: \"" << model.producer_name() << "\"" << nlidt(indent+1)
<< "domain: \"" << model.domain() << "\"" << nlidt(indent+1)
<< "doc_string: \"" << model.doc_string() << "\"";
if (model.has_graph()) {
stream << nlidt(indent+1) << "graph:\n";
dump(model.graph(), stream, indent+2);
}
if (model.opset_import_size()) {
stream << idt(indent+1) << "opset_import: [";
for (auto &opset_imp : model.opset_import()) {
dump(opset_imp, stream);
}
stream << "],\n";
}
stream << idt(indent) << "}\n";
}
} // namespace
std::string prettyPrint(const onnx::ModelProto& model) {
std::stringstream ss;
dump(model, ss, 0);
return ss.str();
}
}
std::string PrettyPrintExportedGraph(
const std::shared_ptr<Graph> &graph,
const std::vector<at::Tensor> &initializers,
int64_t onnx_opset_version,
bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type,
bool google_printer) {
auto graph_encoder = GraphEncoder(
graph, onnx_opset_version, operator_export_type, initializers, defer_weight_export, true);
if (google_printer) {
return graph_encoder.get_model_proto().DebugString();
}
return prettyPrint(graph_encoder.get_model_proto());
}
// export_raw_ir will export IR ops without turning them into ONNX ops.
// The output will use the ONNX protobuf format, but the ops will not
// conform to the ONNX op specification. Thus, the output will not
// be interpretable by a ONNX-compatible framework. However, PyTorch or
// libtorch will be able to import the IR and play it back.
std::tuple<std::string, RawDataExportMap> ExportGraph(
const std::shared_ptr<Graph> &graph,
const std::vector<at::Tensor> &initializers,
int64_t onnx_opset_version,
bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type) {
auto graph_encoder = GraphEncoder(
graph, onnx_opset_version, operator_export_type, initializers, defer_weight_export, false);
return std::make_tuple(graph_encoder.get_model_proto().SerializeAsString(),
graph_encoder.get_raw_data_export_map());
}
void ExportModule(const script::Module& module, std::ostream& out) {
ModuleEncoder(module, out);
}
void ExportModule(const script::Module& module, const std::string &filename) {
std::ofstream out(filename, std::ios_base::binary);
ExportModule(module, out);
}
}}