forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpreter.cpp
755 lines (679 loc) · 25.9 KB
/
interpreter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
#include "interpreter.h"
#include "torch/csrc/autograd/edge.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/generated/variable_factories.h"
#include "torch/csrc/autograd/profiler.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/jit/graph_executor.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/ivalue.h"
#include "torch/csrc/jit/constants.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/variable_tensor_functions.h"
#include "torch/csrc/jit/script/jit_exception.h"
#include <exception>
#include <iostream>
#include <memory>
#include <mutex>
#include <ostream>
#include <stdexcept>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
namespace torch { namespace jit {
// Before we translate to intepreter instructions, we do
// some preprocessing of the graph to turn it into a form that is closer
// to what the instructions will look like.
// In particular we:
// * (TODO) desugar Loop trip counts into c = 0, c += 1 instructions in the loop
// * Turn inputs/outputs into Load/Store instruction
// *. computes move_flags (see Outputs), and inserts
// * Drop nodes are inserted for any node that is unused to create a dummy use
// that will cause the interpreter to free the node.
// A drop node is just a node with no outputs that just pops its inputs off the stack,
// to ensure the interpreter release references to nodes that are never used.
// Drop nodes are also inserted when the last use of a node is in some conditionally
// run control flow (e.g. one side of an If) and the interpreter must free
// the node only after the control flow has reconverged
// Outputs are:
// * graph - the post processed copy of g
// * move_flags[n] - a list of booleans, one for each input,
// indicating whether this is the last use of the value. The interpreter
// should generate a move rather than a copy in this case.
namespace {
// new_cond = (i < max_trip_count) && cond
Value* createTripCountConjunctiveCondition(
Graph* g,
Value* cur_trip_count,
Value* max_trip_count,
Value* cond) {
// Emit initial comparison -- initial_trip_count < max_trip_count
Value* initial_comparison_value =
g->insertNode(g->create(aten::lt, {cur_trip_count, max_trip_count}, 1))
->output()->setType(BoolType::get());
// Replace initial condition with logical `and` of trip count and
// initial condition
Value* new_cond =
g->insertNode(
g->create(aten::__and__, {initial_comparison_value, cond}, 1))
->output()->setType(BoolType::get());
return new_cond;
}
// this currently just _removes_ the trip count inputs and checks they are
// unused. In the future they will be desugared into normal arithmetic to
// provide a loop counter
void desugarTripCounts(Block * b) {
for(auto n : b->nodes()) {
if(n->kind() == prim::Loop) {
auto g = n->owningGraph();
auto body_block = n->blocks()[0];
Value* block_trip_count_input = body_block->inputs()[0];
// Treat loop iteration number as a loop-carried dependency. We emit an
// increment at the end of the body block.
n->insertOutput(0);
Value* max_trip_count_value = n->input(0);
{
WithInsertPoint guard(n);
// int i = 0
Value* initial_trip_count = g->insertConstant(0);
// Set up initial iteration number value for loop-carried dependency
n->removeInput(0);
// Input 0 is now initial termination condition, insert this after that.
// LCD's start at index 1.
n->insertInput(1, initial_trip_count);
Value* new_cond = createTripCountConjunctiveCondition(
g, initial_trip_count, max_trip_count_value, n->input(0));
n->replaceInput(0, new_cond);
}
{
WithInsertPoint guard(body_block);
// Trip count is now a loop carried dependency. We emit an op to
// increment the trip count at the end of the body. Then, emit the same
// conjunctive stopping condition as above.
Value* const_one = g->insertConstant(1);
Value* inc_trip_count =
g->insertNode(g->create(
aten::add, {block_trip_count_input, const_one}, 1))
->output()->setType(IntType::get());
body_block->insertOutput(1, inc_trip_count);
Value* body_cond = createTripCountConjunctiveCondition(
g, inc_trip_count, max_trip_count_value, body_block->outputs()[0]);
body_block->eraseOutput(0);
body_block->insertOutput(0, body_cond);
}
}
for(auto sb : n->blocks()) {
desugarTripCounts(sb);
}
}
}
// removes all inputs and outputs to a graph, replacing them with Load Store nodes
static void flattenIO(Graph & graph) {
auto load = graph.prependNode(graph.create(prim::Load, 0));
for(auto old_input : graph.inputs()) {
auto nv = load->addOutput();
nv->setType(old_input->type());
old_input->replaceAllUsesWith(nv);
}
graph.appendNode(graph.create(prim::Store, graph.outputs(), 0));
while (graph.inputs().size() > 0)
graph.eraseInput(graph.inputs().size() - 1);
while (graph.outputs().size() > 0)
graph.eraseOutput(graph.outputs().size() - 1);
}
// insert Drop nodes to kill references for anything unused:
// this can happen in a few places, e.g. when a node returns
// many values but only one is used
// a, b = foo()
// return a
void dropUnused(Block *b) {
auto createDropIfUnused = [&](ArrayRef<Value*> values) -> Node* {
std::vector<Value*> to_drop;
for(auto v : values) {
if(v->uses().size() == 0)
to_drop.push_back(v);
}
if(to_drop.size() == 0)
return nullptr;
return b->owningGraph()->create(prim::Drop, to_drop, 0);
};
if(auto d = createDropIfUnused(b->inputs())) {
b->prependNode(d);
}
for(auto n : b->nodes()) {
if(auto d = createDropIfUnused(n->outputs())) {
d->insertAfter(n);
}
for(auto b : n->blocks())
dropUnused(b);
}
}
// for each input, should we move rather than copy the inputs
std::unordered_map<Node*, std::vector<uint8_t>> findLastUses(Graph & g) {
// struct to share common data structures
struct FindLastUses {
Graph & graph;
// have we seen this value, yet, if not, it is the last use of the value
std::unordered_set<Value*> seen;
std::unordered_map<Node*, std::vector<uint8_t>> move_flags;
// A map from an If or Loop node to the optional Drop block that
// occurs directly after it to release any tensors that go out of scope
// when the If/Loop exits. These are created and inserted on demand.
std::unordered_map<Node*, Node*> drop_for_node;
FindLastUses(Graph & g)
: graph(g) {
scanBlock(graph.block());
}
void scanBlock(Block * b) {
scanNode(b->return_node());
for(auto n : b->nodes().reverse()) {
scanNode(n);
}
}
void scanNode(Node * n) {
for(auto b : n->blocks()) {
scanBlock(b);
}
move_flags[n].resize(n->inputs().size());
// scan backwards so if a value is used twice in the list then it is a move
for(size_t i = n->inputs().size(); i > 0; --i) {
scanUse(n, i-1);
}
}
void scanUse(Node * n, size_t i) {
auto & move_flags_n = move_flags[n];
auto v = n->inputs()[i];
auto inserted = seen.insert(v).second;
if(!inserted) {
move_flags_n[i] = false;
return;
}
// the last use of v may be in a nested block of an If or Loop statement
// find the node 'same_depth_node' at the same depth as the definition of v,
// and consider that node to be the last use of v.
// This ensures we do not delete nodes in nested scopes
// that may be executed multiple times
// and that nodes used on one side of an if
// but not the other get deleted regardless of the branch
// e.g.
// a = 4
// while <...>:
// y = a + a
// drop(a)
// In other words, we find the first program point for v that
// _reverse_ dominates the definition of v, and add a drop point there.
Node * same_depth_node = findOwnerInBlock(n, v->node()->owningBlock());
JIT_ASSERT(same_depth_node); // failure means v is not in scope for n, use lint!
// In the case where v and n are in the same block, just mark
// its move_flags to be true
if(same_depth_node == n) {
move_flags_n[i] = true;
return;
}
// in the case where the use is nested in a block
// add a Drop node after that block which will drop 'v'.
move_flags_n[i] = false;
addToDropIfNotExists(findOrCreateDropInstructionForNode(same_depth_node), v);
}
// finds the node in block 'block' that contains in 'n'
// or nullptr if no such node exists, e.g.:
// n0: a = 4
// n1: if <cond>:
// n2: b = a + a
// findOwnerInBlock(n2, n0.block()) == n1
Node * findOwnerInBlock(Node * n, Block * block) {
while(n != nullptr && block != n->owningBlock()) {
n = n->owningBlock()->owningNode();
}
return n;
}
Node * findOrCreateDropInstructionForNode(Node * n) {
auto it = drop_for_node.find(n);
if(it == drop_for_node.end()) {
auto drop_node = graph.create(prim::Drop, 0);
drop_node->insertAfter(n);
it = drop_for_node.emplace(n, drop_node).first;
}
return it->second;
}
void addToDropIfNotExists(Node * drop, Value * v) {
for(auto i : drop->inputs()) {
// we already accounted for this use
if(i == v)
return;
}
drop->addInput(v);
move_flags[drop].push_back(true);
}
};
return FindLastUses(g).move_flags;
}
} //namespace
// pre-processing that happens once per graph
struct PreprocessGraph {
PreprocessGraph(Graph & g)
: graph(g.copy()) {
desugarTripCounts(graph->block());
flattenIO(*graph);
dropUnused(graph->block());
// fill in move_flags by scanning blocks;
move_flags = findLastUses(*graph);
//TODO: desugar Loop trip counts, for now we drop trip counts
}
// Outputs of the preprocessing:
std::shared_ptr<Graph> graph;
// for each input, should we move rather than copy the inputs
std::unordered_map<Node*, std::vector<uint8_t>> move_flags;
};
// Sometimes we want to pass things that are not tensors. Instead of
// coming up with some "superclass" for tensor, which is annoying since
// 99% of values are at::Tensor, we instead we create a fake subclass of
// TensorImpl that can be subclassed to hold arbitrary things
// Note: this is currently unused but will probably be useful in the future,
// so we keep it around
struct ContainerTensor : public at::TensorImpl {
public:
ContainerTensor()
: TensorImpl(at::UndefinedTensorId(), caffe2::TypeMeta(), nullptr, /* is_variable */ false) {}
virtual ~ContainerTensor() = default;
virtual at::IntList sizes() const override {
throw std::runtime_error("sizes() on ContainerTensor");
}
virtual at::IntList strides() const override {
throw std::runtime_error("strides() on ContainerTensor");
}
virtual int64_t dim() const override {
throw std::runtime_error("dim() on ContainerTensor");
}
virtual const at::Storage& storage() const override {
throw std::runtime_error("storage() on ContainerTensor");
}
};
// We need some lists for inputs and outputs. To keep all the memory
// contiguous we allocate a single vector and use offsets into the vector
// which are stored in the ListHandle struct
// start is an offset into int_data of Code for ListHandle<int>
// and bool_data of Code for ListHandle<bool>
template<typename T>
struct ListHandle {
int start;
int size;
};
struct UseList {
// values to be used
ListHandle<int> values;
// boolean flags indicating whether to free the Tensor after this use
ListHandle<bool> free_flags;
};
// one instruction plus meta-data
struct Instruction {
Operation callback;
UseList inputs;
ListHandle<int> outputs;
Symbol debug_name; // used in dump to understand the generated code
std::shared_ptr<SourceLocation> debug_location; // for error reporting
};
int relativeJump(int from_inst, int to_inst) {
return to_inst - (from_inst + 1);
}
struct CodeImpl {
CodeImpl(const std::shared_ptr<Graph>& graph_)
: preprocess(*graph_) {
graph = preprocess.graph;
insertNodesFromBlock(graph->block());
}
// jump when input is false
void createJumpFalse(int from_inst, int to_inst) {
auto & inst = instructions[from_inst];
JIT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [offset](Stack & stack) {
auto t = pop(stack).toBool();
return t ? 0 : offset;
};
inst.debug_name = prim::JumpZ;
}
// jump when input is true
void createJumpTrue(int from_inst, int to_inst) {
auto & inst = instructions[from_inst];
JIT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [offset](Stack & stack) {
auto t = pop(stack).toBool();
return t ? offset : 0;
};
inst.debug_name = prim::JumpNZ;
}
void createJump(int from_inst, int to_inst) {
auto & inst = instructions[from_inst];
JIT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [=](Stack & stack) {
return offset;
};
inst.debug_name = prim::Jump;
}
void insertNodesFromBlock(Block* block) {
for(auto node : block->nodes()) {
const auto & source_location = node->getSourceLocation();
switch(node->kind()) {
case prim::If: {
// x = if c:
// <then_block>
// -> (vt)
// else:
// <else_block>
// -> (vf)
// turns into:
// JumpNZ c, then
// <else_block>
// x = vf
// Jump end
// then:
// <then_block>
// x = vt
// end:
// prim::Placeholder instructions are replaced with branch instructions
// when the branch target locations are known
auto cond_branch = insertInstruction(prim::Placeholder, source_location, node->inputs(), moveFlags(node), {});
auto then_block = node->blocks()[0];
auto else_block = node->blocks()[1];
insertNodesFromBlock(else_block);
insertAssign(source_location,else_block->outputs(), moveFlags(else_block), node->outputs());
auto jump = insertInstruction(prim::Placeholder, source_location, {}, {}, {});
auto then_block_start = instructions.size();
insertNodesFromBlock(then_block);
insertAssign(source_location, then_block->outputs(), moveFlags(then_block), node->outputs());
createJump(jump, instructions.size());
createJumpTrue(cond_branch, then_block_start);
} break;
case prim::Loop: {
// o0 = while c i0
// block 0: l0
// <body>
// -> (v0, v1)
// turns into:
// l0 = i0
// JumpZ c, end
// begin:
// <body>
// c, l0 = v0, v1
// JumpNZ c, begin
// end:
auto body_block = node->blocks()[0];
// before assign op: stack: ... <cond> <loop-carried-depdencies>
insertAssign(source_location, node->inputs(), moveFlags(node), body_block->inputs());
// after assign op: stack: ... <cond>
// cond_branch consumes <cond> from top of the stack
auto cond_branch = insertInstruction(prim::Placeholder, source_location,{}, {}, {});
// after branch: stack: ...
auto entry = instructions.size();
insertNodesFromBlock(body_block);
// before assign op: stack: ... <cond> <loop-carried-depdencies>
insertAssign(source_location, body_block->outputs(), moveFlags(body_block), body_block->inputs());
// after assign op: stack: ... <cond>
auto cond_branch_end = insertInstruction(prim::Placeholder, source_location, {}, {}, {});
// after branch: stack: ...
aliasRegistersTo(node->outputs(), body_block->inputs());
createJumpFalse(cond_branch, instructions.size());
createJumpTrue(cond_branch_end, entry);
} break;
default: {
insertInstruction(node);
} break;
}
}
}
size_t insertInstruction(Node * n) {
auto inst = insertInstruction(n->kind(), n->getSourceLocation(), n->inputs(), moveFlags(n) , n->outputs());
instructions[inst].callback = getOperation(n);
return inst;
}
size_t insertInstruction(Symbol sym,
std::shared_ptr<SourceLocation> debug_location,
ArrayRef<Value*> inputs,
ArrayRef<uint8_t> move_flags,
ArrayRef<Value*> outputs) {
instructions.emplace_back();
auto & inst = instructions.back();
inst.debug_name = sym;
inst.debug_location = std::move(debug_location);
listBegin(inst.inputs.values);
for(auto input : inputs) {
listInsert(inst.inputs.values, getOrAllocateRegister(input, true));
}
listBegin(inst.inputs.free_flags);
for(auto flag : move_flags) {
listInsert(inst.inputs.free_flags, flag);
}
listBegin(inst.outputs);
for(auto output : outputs) {
listInsert(inst.outputs, getOrAllocateRegister(output));
}
return instructions.size() - 1;
}
ArrayRef<uint8_t> moveFlags(Node * n) {
return preprocess.move_flags.at(n);
}
ArrayRef<uint8_t> moveFlags(Block *b) {
return moveFlags(b->return_node());
}
size_t insertAssign(std::shared_ptr<SourceLocation> debug_location, ArrayRef<Value*> inputs, ArrayRef<uint8_t> move_flags, ArrayRef<Value*> outputs) {
auto inst = insertInstruction(prim::Assign, std::move(debug_location),inputs, move_flags, outputs);
// This node effectively forwards its inputs into different places in a register list.
// We don't need to manipulate the stack in any way, because all inputs are also outputs,
// and the interpreter will take care of putting them in correct places.
instructions[inst].callback = [](Stack& stack) { return 0; };
return inst;
}
// helpers to build/access RegList objects
int get(const ListHandle<int> & list, int i) const {
return int_data[list.start + i];
}
bool get(const ListHandle<bool> & list, int i) const {
return bool_data[list.start + i];
}
void listBegin(ListHandle<int> & list) {
list.start = int_data.size();
list.size = 0;
}
void listInsert(ListHandle<int> & list, int value) {
JIT_ASSERTM(list.start + list.size == (int)int_data.size(), "another list already started");
int_data.push_back(value);
list.size++;
}
void listBegin(ListHandle<bool> & list) {
list.start = bool_data.size();
list.size = 0;
}
void listInsert(ListHandle<bool> & list, int value) {
JIT_ASSERTM(list.start + list.size == (int)bool_data.size(), "another list already started");
bool_data.push_back(value);
list.size++;
}
// must be called before any new_allocations are used, otherwise they will
// already have registers assigned
void aliasRegistersTo(ArrayRef<Value*> new_allocations, ArrayRef<Value*> existing_allocations) {
JIT_ASSERT(new_allocations.size() == existing_allocations.size());
for(size_t i = 0; i < new_allocations.size(); ++i) {
auto n = new_allocations[i]->unique();
auto e = existing_allocations[i]->unique();
JIT_ASSERT(unique_to_reg.count(e) > 0 && unique_to_reg.count(n) == 0);
unique_to_reg[n] = unique_to_reg[e];
}
}
int getOrAllocateRegister(Value * n, bool required = false) {
size_t u = n->unique();
if(unique_to_reg.count(u) > 0)
return unique_to_reg[u];
JIT_ASSERT(!required);
int r = register_size++;
unique_to_reg[u] = r;
return r;
}
const std::vector<GraphExecutor*>& grad_executors() {
if (!grad_executors_) {
grad_executors_.emplace();
for (Instruction & instr : instructions) {
if (auto executor = detail::getGradExecutor(instr.callback)) {
grad_executors_->push_back(executor);
}
}
}
return *grad_executors_;
}
void dumpInstruction(std::ostream & out, size_t pc) const {
auto writeList = [&](const ListHandle<int> & list) {
for(int i = 0; i < list.size; i++) {
if(i > 0)
out << ", ";
out << get(list, i);
}
};
auto writeUseList = [&](const UseList & list) {
for(int i = 0; i < list.values.size; i++) {
if(i > 0)
out << ", ";
if(get(list.free_flags, i))
out << "move(" << get(list.values, i) << ")";
else
out << get(list.values, i);
}
};
auto & inst = instructions.at(pc);
writeList(inst.outputs);
// NB: debug names are the kind of operator used to select
// dispatch
out << " = " << inst.debug_name.toUnqualString() << " ";
writeUseList(inst.inputs);
}
void dump(std::ostream & out) const {
for(size_t i = 0; i < instructions.size(); ++i) {
dumpInstruction(out, i);
out << "\n";
}
}
// We MUST hold onto graph here because some Operators stored in the
// instruction lists have dependencies on meta-data stored in the graph
// that would be dead otherwise.
// It is also very useful for debugging interpreter problems to
// keep this around.
std::shared_ptr<Graph> graph;
c10::optional<std::vector<GraphExecutor*>> grad_executors_;
PreprocessGraph preprocess;
std::unordered_map<size_t, int> unique_to_reg; // map from unique of nodes to register in register table
friend struct InterpreterState;
std::vector<Instruction> instructions;
int register_size = 0;
// all memory ArrayRef<int> are slices of this, to make sure
// the interpreter is mostly linearly scanning through memory
std::vector<int> int_data;
std::vector<bool> bool_data;
};
// InterpreterState state that and used to compute a Code
struct InterpreterStateImpl {
InterpreterStateImpl(const Code & code)
: function(code.pImpl),
int_data(function->int_data.data()),
bool_data(function->bool_data),
registers(function->register_size) {
}
void run(Stack & stack) {
// std::cout << *function->graph << "\n";
// function->dump(std::cout);
size_t pc = current_pc;
auto & instructions = function->instructions;
size_t last = instructions.size();
while(pc < last) {
// std::cout << "executing " << pc << ": ";
// function->dumpInstruction(std::cout, pc);
// std::cout << "\n";
try {
auto & inst = instructions[pc];
loadTensorsFromRegisters(inst.inputs, stack);
size_t new_pc = pc + 1 + inst.callback(stack);
for(int i = inst.outputs.size - 1; i >= 0; i--) {
int reg = get(inst.outputs,i);
registers[reg] = pop(stack);
// std::cout << "pop reg[" << reg << "];\n" << registers[reg] << "\n";
}
pc = new_pc;
} catch(std::exception & e) {
if (!instructions[pc].debug_location) {
throw;
}
auto msg = instructions[pc].debug_location->wrapException(e, "operation failed in interpreter");
if (dynamic_cast<JITException *>(&e)) {
throw JITException(msg);
} else {
throw std::runtime_error(msg);
}
}
}
current_pc = pc;
}
int get(const ListHandle<int> & list, int i) {
return int_data[list.start + i];
};
bool get(const ListHandle<bool> & list, int i) {
return bool_data[list.start + i];
}
void loadTensorsFromRegisters(const UseList & uses, Stack & stack) {
for(int i = 0; i < uses.values.size; i++) {
int reg = get(uses.values,i);
// std::cout << "push reg[" << reg << "];\n" << registers[reg] << "\n\n";
if(get(uses.free_flags,i)) {
stack.push_back(std::move(registers[reg]));
} else {
stack.push_back(registers[reg]);
}
}
}
// note: it may seem unnecessary to keep the current_pc inside InterpreterState
// since InterpreterState::run completes the function. However, in the
// future we will end up with interpreters that can suspend (e.g. for asynchrony)
// so we keep this design in place eventhough we removed the 'staging'
// that it was originally used for.
size_t current_pc = 0;
std::shared_ptr<CodeImpl> function; // keep function alive
// these are just copies of function to prevent indirections in interpreter
int * int_data;
const std::vector<bool> & bool_data;
// this holds all the tensors for this interpreter run
// we don't bother minimizing the size of this vector, since the extra
// memory used by the pointers in this will be small
// instead we are very aggresive about releasing tensors when they become dead
// to make sure memory management happens efficiently.
// We optimize for the case where derivatives are run with retain_graph=False
// in the case where it is true, then the interpreter and this array get copied
// if this every becomes a bottleneck then we _should_ consider minimizing the
// total number or register
std::vector<IValue> registers;
// single buffer for input/output calls to ATen functions, so that we do not reallocate
Stack stack;
};
std::ostream & operator<<(std::ostream & out, const Code & code) {
out << *code.pImpl->graph << "\n";
code.pImpl->dump(out);
return out;
}
Code::Code(const std::shared_ptr<Graph>& graph)
: pImpl(new CodeImpl(graph)) {}
Code::~Code() = default;
const std::vector<GraphExecutor*>& Code::grad_executors() {
return pImpl->grad_executors();
}
InterpreterState::InterpreterState(const Code & code)
: pImpl(new InterpreterStateImpl(code)) {}
InterpreterState::~InterpreterState() = default;
void InterpreterState::run(Stack & stack) {
return pImpl->run(stack);
}
InterpreterState InterpreterState::clone() const {
return InterpreterState(new InterpreterStateImpl(*pImpl));
}
InterpreterState::InterpreterState(InterpreterStateImpl * pImpl) : pImpl(pImpl) {}
}}