-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeedforward_nn.py
103 lines (90 loc) · 3.19 KB
/
feedforward_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import torch
from torch import nn
from torchvision import transforms
import torchvision.datasets as dsets
from torch.autograd import Variable
train_dataset = dsets.MNIST(root='./mnist_data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./mnist_data',
train=False,
transform=transforms.ToTensor(),
download=True)
batch_size = 100
n_iters = 5000
num_epochs = int(n_iters / (len(train_dataset) / batch_size))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class FeedforwardNeuralNetModel(nn.Module):
def __init__(self, input_size, hidden_dim, num_classes):
# Create the various layers as member vars
super(FeedforwardNeuralNetModel, self).__init__()
# Linear function
self.fc1 = nn.Linear(input_dim, hidden_dim)
# Non-linearity
self.relu1= nn.ReLU()
# Linear function
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.relu2= nn.ReLU()
# Linear function (readout)
self.fc3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
# Define the forward pass
# Linear function
out = self.fc1(x)
# Non-linearity
out = self.relu1(out)
# Linear function (readout)
out = self.fc2(out)
out = self.relu2(out)
out = self.fc3(out)
return out
input_dim = 28*28
hidden_dim = 200
output_dim = 10
model = FeedforwardNeuralNetModel(input_dim, hidden_dim, output_dim)
if torch.cuda.is_available():
model.cuda()
criterion = nn.CrossEntropyLoss()
learning_rate = 0.005
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
print("Starting training...")
iter = 0
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
if torch.cuda.is_available():
images = Variable(images.view(-1, 28*28).cuda())
labels = Variable(labels.cuda())
else:
images = Variable(images.view(-1, 28*28))
labels = Variable(labels)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
iter += 1
if iter % 50 == 0:
correct = 0
total = 0
for images, labels in test_loader:
if torch.cuda.is_available():
images = Variable(images.view(-1, 28*28).cuda())
else:
images = Variable(images.view(-1, 28*28))
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
if torch.cuda.is_available():
correct += (predicted.cpu() == labels.cpu()).sum()
else:
correct += (predicted == labels).sum()
accuracy = correct / total
print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter,
loss.data[0], accuracy))